|
General
|
|
|
- Fully Supported
- Limitation
- Not Supported
- Information Only
|
|
Pros
|
- + Extensive platform support
- + Extensive data protection capabilities
- + Flexible deployment options
|
- + Built for simplicity
- + Policy-based management
- + Cost-effectiveness
|
- + Broad range of hardware support
- + Strong VMware integration
- + Policy-based management
|
|
Cons
|
- - No native data integrity verification
- - Dedup/compr not performance optimized
- - Disk/node failure protection not capacity optimized
|
- - Single hypervisor support
- - No stretched clustering
- - No native file services
|
- - Single hypervisor support
- - Very limited native data protection capabilities
- - Dedup/compr not performance optimized
|
|
|
|
Content |
|
|
|
WhatMatrix
|
WhatMatrix
|
WhatMatrix
|
|
|
|
Assessment |
|
|
|
Name: SANsymphony
Type: Software-only (SDS)
Development Start: 1998
First Product Release: 1999
NEW
DataCore was founded in 1998 and began to ship its first software-defined storage (SDS) platform, SANsymphony (SSY), in 1999. DataCore launched a separate entry-level storage virtualization solution, SANmelody (v1.4), in 2004. This platform was also the foundation for DataCores HCI solution. In 2014 DataCore formally announced Hyperconverged Virtual SAN as a separate product. In May 2018 integral changes to the software licensing model enabled consolidation because the core software is the same and since then cumulatively called DataCore SANsymphony.
One year later, in 2019, DataCore expanded its software-defined storage portfolio with a solution especially for the need of file virtualization. The additional SDS offering is called DataCore vFilO and operates as scale-out global file system across distributed sites spanning on-premises and cloud-based NFS and SMB shares.
Recently, at the beginning of 2021, DataCore acquired Caringo and integrated its know how and software-defined object storage offerings into the DataCore portfolio. The newest member of the DataCore SDS portfolio is called DataCore Swarm and together with its complementary offering SwarmFS and DataCore FileFly it enables customers to build on-premises object storage solutions that radically simplify the ability to manage, store, and protect data while allowing multi-protocol (S3/HTTP, API, NFS/SMB) access to any application, device, or end-user.
DataCore Software specializes in the high-tech fields of software solutions for block, file, and object storage. DataCore has by far the longest track-record when it comes to software-defined storage, when comparing to the other SDS/HCI vendors on the WhatMatrix.
In April 2021 the company had an install base of more than 10,000 customers worldwide and there were about 250 employees working for DataCore.
|
Name: Hyperconvergence (HC3)
Type: Hardware+Software (HCI)
Development Start: 2011
First Product Release: 2012
Scale Computing was founded in 2007 and began to ship its first SAN/NAS scale-out storage product, in 2009. Mid 2011 development started on the Hyperconvergence (HC3) platform, which was to combine the 3 foundation layers, being compute, storage and virtualization, into a single hardware appliance. HC3 was built to provide ultra simple ease-of-use and initially targeted at the SMB market. The first HC3 models were released in August 2012.
In Januari 2019 the company had an install base of more than 3,500 customers worldwide. In January 2019 there were 130+ employees working for Scale Computing.
|
Name: vSAN
Type: Software-only (SDS)
Development Start: Unknown
First Product Release: 2014
VMware was founded in 1998 and began to ship its first Software Defined Storage solution, Virtual SAN, in 2014. Virtual SAN was later rebranded to vSAN. The vSAN solution is fully integrated into the vSphere Hypervisor platform. In 2015 VMware released major updates in the second iteration of the product. Close to the end of 2016 the third iteration was released.
At the end of May 2019 the company had a customer install base of more than 20,000 vSAN customers worldwide. This covers both vSAN and VxRail customers. At the end of May 2019 there were over 30,000 employees working for VMware worldwide.
|
|
|
GA Release Dates:
SSY 10.0 PSP12: jan 2021
SSY 10.0 PSP11: aug 2020
SSY 10.0 PSP10: dec 2019
SSY 10.0 PSP9: jul 2019
SSY 10.0 PSP8: sep 2018
SSY 10.0 PSP7: dec 2017
SSY 10.0 PSP6 U5: aug 2017
.
SSY 10.0: jun 2014
SSY 9.0: jul 2012
SSY 8.1: aug 2011
SSY 8.0: dec 2010
SSY 7.0: apr 2009
.
SSY 3.0: 1999
NEW
10th Generation software. DataCore currently has the most experience when it comes to SDS/HCI technology, when comparing SANsymphony to other SDS/HCI platforms.
SANsymphony (SSY) version 3 was the first public release that hit the market back in 1999. The product has evolved ever since and the current major release is version 10. The list includes only the milestone releases.
PSP = Product Support Package
U = Update
|
GA Release Dates:
HCOS 8.6.5: mar 2020
HCOS 8.5.3: oct 2019
HCOS 8.3.3: jul 2019
HCOS 8.1.3: mar 2019
HCOS 7.4.22: may 2018
HCOS 7.2.24: sep 2017
HCOS 7.1.11: dec 2016
HCOS 6.4.2: apr 2016
HCOS 6.0: feb 2015
HCOS 5.0: oct 2014
ICOS 4.0: aug 2012
ICOS 3.0: may 2012
ICOS 2.0: feb 2010
ICOS 1.0: feb 2009
NEW
8th Generation Scale Computing software on proven Lenovo and SuperMicro server hardware.
Scale Computing HC3s maturity has been steadily increasing ever since the first iteration by expanding its feature set with both foundational and advanced capabilities. Due to its primary focus on small- and midsized organizations, the feature set does not (yet) incorporate some of the larger enterprise capabilities.
HCOS = HyperCore Operating System
ICOS = Intelligent Clustered Operating System
|
GA Release Dates:
vSAN 7.0 U1: oct 2020
vSAN 7.0: apr 2020
vSAN 6.7 U3: apr 2019
vSAN 6.7 U1: oct 2018
vSAN 6.7: may 2018
vSAN 6.6.1: jul 2017
vSAN 6.6: apr 2017
vSAN 6.5: nov 2016
vSAN 6.2: mar 2016
vSAN 6.1: aug 2015
vSAN 6.0: mar 2015
vSAN 5.5: mar 2014
NEW
7th Generation software. vSAN maturity has again increased by expanding its range of features with a set of advanced functionality.
vSAN is also a key element in both the VCE VxRail/VxRack and VMware EVO:SDDC propositions.
|
|
|
|
Pricing |
|
|
Hardware Pricing Model
Details
|
N/A
SANsymphony is sold by DataCore as a software-only solution. Server hardware must be acquired separately.
The entry point for all hardware and software compatibility statements is: https://www.datacore.com/products/sansymphony/tech/compatibility/
On this page links can be found to: Storage Devices, Servers, SANs, Operating Systems (Hosts), Networks, Hypervisors, Desktops.
Minimum server hardware requirements can be found at: https://www.datacore.com/products/sansymphony/tech/prerequisites/
|
Per Node
Each Scale Computing HC3 appliance purchased consists of hardware (server+storage), software (all-inclusive) and 1 year of premium support. Optionally end-users can also request for TOR-switches as part of the solution and deployment.
In june 2018 Scale Computing introduced an Managed Service Providers (MSP) Program that offers these organizations a price-per node, per-month, OpEx subscription license.
TOR = Top-of-Rack
|
N/A
vSAN is sold by VMware as a software-only solution. Server hardware must be acquired separately.
VMware maintains an extensive Hardware Compatibility List (HCL) with supported hardware for VMware vSAN implementations.
For guidance on proper hardware configurations, VMware provides a vSAN Hardware Quick Reference Guide.
You can view both the HCL and the Quick Reference Guide by using the following link: http://www.vmware.com/resources/compatibility/search.php?deviceCategory=vSAN
To help customers further, VMware also partners with multiple server hardware manufacturers to provide reference configurations in the VMware vSAN Ready Nodes document.
|
|
Software Pricing Model
Details
|
Capacity based (per TB)
NEW
DataCore SANsymphony is licensed in three different editions: Enterprise, Standard, and Business.
All editions are licensed per capacity (in 1 TB steps). Except for the Business edition which has a fixed price per TB, the more capacity that is used by an end-user in each class, the lower the price per TB.
Each edition includes a defined feature set.
Enterprise (EN) includes all available features plus expanded Parallel I/O.
Standard (ST) includes all Enterprise (EN) features, except FC connections, Encryption, Inline Deduplication & Compression and Shared Multi-Port Array (SMPA) support with regular Parallel I/O.
Business (BZ) as entry-offering includes all essential Enterprise (EN) features, except Asynchronous Replication & Site Recovery, Encryption, Deduplication & Compression, Random Write Accelerator (RWA) and Continuous Data Protection (CDP) with limited Parallel I/O.
Customers can choose between a perpetual licensing model or a term-based licensing model. Any initial license purchase for perpetual licensing includes Premier Support for either 1, 3 or 5 years. Alternatively, term-based licensing is available for either 1, 3 or 5 years, always including Premier Support as well, plus enhanced DataCore Insight Services (predictive analytics with actionable insights). In most regions, BZ is available as term license only.
Capacity can be expanded in 1 TB steps. There exists a 10 TB minimum per installation for Business (BZ). Moreover, BZ is limited to 2 instances and a total capacity of 38 TB per installation, but one customer can have multiple BZ installations.
Cost neutral upgrades are available when upgrading from Business/Standard (BZ/ST) to Enterprise (EN).
|
Per Node (all-inclusive)
There is no separate software licensing. Each node comes equiped with an all-inclusive feature set. This means that without exception all Scale Computing HC3 software capabilities are available for use.
In june 2018 Scale Computing introduced an Managed Service Providers (MSP) Program that offers these organizations a price-per node, per-month, OpEx subscription license.
HC3 Cloud Unity DRaaS requires a monthly subscription that is in part based on Google Cloud Platform (GCP) resource usage (compute, storage, network). The HC3 Cloud Unity DRaaS subscription includes:
- 6 days of Active Mode testing
- Runbook outlining DR procedures
- 1 Runbook failover test and 1 separate Declaration
- Network egress equal to 12.5% of Storage
- ScaleCare Support
In addition end-users and first-time service providers can purchase a DR Planning Service (one-time fee) for onboarding.
|
Per CPU Socket
Per Desktop (VDI use cases only)
Per Used GB (VCPP only)
Editions:
vSAN Enterprise
vSAN Advanced
vSAN Standard
vSAN for ROBO Enterprise
vSAN for ROBO Advanced
vSAN for ROBO Standard
vSAN (for ROBO) Standard editions offer All-Flash Hardware, iSCSI Target Service, Storage Policy Based Management, Virtual Distributed Switch, Rack Awareness, Software Checksum and QoS - IOPS Limit.
vSAN (for ROBO) Enterprise and vSAN (for ROBO) Advanced editions exclusively offer All-Flash related features RAID-5/6 Erasure Coding and Deduplication+Compression, as well as vRealize Operations within vCenter over vSAN (for ROBO) Standard editions.
vSAN (for ROBO) Enterprise editions exclusively offer Stretched Cluster and Data-at-rest Encryption features over both vSAN (for ROBO) Standard and Advanced editions.
VMware vSAN is priced per CPU socket for VSI workloads, but can also be acquired per desktop for VDI use cases; A 25VM Pack is exclusively available for ROBO use cases.
vSAN for Desktop is priced per named user or per concurrent user (CCU) in a virtual desktop environment and sold in packs of 10 and 100 licenses.
VMware vSAN is priced per Used GB when subscribing to vSAN from a VMware Cloud Provider (VCPP = VMware Cloud Partner Program).
|
|
Support Pricing Model
Details
|
Capacity based (per TB)
Support is always provided on a premium (24x7) basis, including free updates.
More information about DataCores support policy can be found here:
http://datacore.custhelp.com/app/answers/detail/a_id/1270/~/what-is-datacores-support-policy-for-its-products
|
Per Node
Each appliance comes with 1 year ScaleCare Premium Support that consists of:
- 24x7x365 by telephone (US and Europe)
- 2 hour response time for critical issues
- Live chat, email support, and general phone on Mo-Fr 8AM-8PM EDST.
- Next Business Day (NBD) delivery of hardware replacement parts
ScaleCare Premium Support also provides remote installation services on the initial deployment of ScaleComputing HC3 clusters.
In june 2018 Scale Computing introduced an Managed Service Providers (MSP) Program that offers these organizations a price-per node, per-month, OpEx subscription license.
|
Per CPU Socket
Per Desktop (VDI use cases only)
Subscriptions: Basic, Production, Business, Critical and Mission Critical
For details on the different support subscriptions, please use the following link: https://www.vmware.com/support/services/compare.html
|
|
|
Design & Deploy
|
|
|
|
|
|
|
Design |
|
|
Consolidation Scope
Details
|
Storage
Data Protection
Management
Automation&Orchestration
DataCore is storage-oriented.
SANsymphony Software-Defined Storage Services are focused on variable deployment models. The range covers classical Storage Virtualization over Converged and Hybrid-Converged to Hyperconverged including a seamless migration between them.
DataCore aims to provide all key components within a storage ecosystem including enhanced data protection and automation & orchestration.
|
Hypervisor
Compute
Storage
Networking (optional)
Data Protection
Management
Automation&Orchestration
Scale Computing is stack-oriented.
With the HC3 platform Scale Computing aims to provide all functionality required in a Private Cloud ecosystem.
|
Hypervisor
Compute
Storage
Data Protection (limited)
Management
Automation&Orchestration
VMware is stack-oriented, whereas the vSAN platform itself is heavily storage-focused.
With the vSAN/VxRail platforms VMware aims to provide all functionality required in a Private Cloud ecosystem.
|
|
|
1, 10, 25, 40, 100 GbE (iSCSI)
8, 16, 32, 64 Gbps (FC)
The bandwidth required depends entirely on the specifc workload needs.
SANsymphony 10 PSP11 introduced support for Emulex Gen 7 64 Gbps Fibre Channel HBAs.
SANsymphony 10 PSP8 introduced support for Gen6 16/32 Gbps ATTO Fibre Channel HBAs.
|
1, 10 GbE
Scale Computing hardware models include redundant ethernet connectivity in an active/passive setup.
|
1, 10, 40 GbE
vSAN supports ethernet connectivity using SFP+ or Base-T. VMware recommends 10GbE or higher to avoid the network becoming a performance bottleneck.
|
|
Overall Design Complexity
Details
|
Medium
DataCore SANsymphony is able to meet many different use-cases because of its flexible technical architecture, however this also means there are a lot of design choices that need to be made. DataCore SANsymphony seeks to provide important capabilities either natively or tightly integrated, and this keeps the design process relatively simple. However, because many features in SANsymphony are optional and thus can be turned on/off, in effect each one needs to be taken into consideration when preparing a detailed design.
|
Low
Scale Computing HC3 was developed with simplicity in mind, both from a design and a deployment perspective. The HC3 platform architecture is meant to be applicable to general virtual server infrastructure (VSI) use-cases and seeks to provide important capabilities natively. There are only a few storage building blocks to choose from, and many advanced capabilities like deduplication are always turned on. This minimizes the amount of design choices as well as the number of deployment steps.
|
Medium
VMware vSAN was developed with simplicity in mind, both from a design and a deployment perspective. VMware vSANs uniform platform architecture is meant to be applicable to all virtualization use-cases and seeks to provide important capabilities either natively or by leveraging features already present in the VMware hypervisor, vSphere, on a per-VM basis. However, there are still some key areas where vSAN still relies heavily on external products and where there is no tight integration involved (eg. backup/restore). In these cases choices need to made whether to incorporate 1st party of 3rd party solutions into the overall technical design.
|
|
External Performance Validation
Details
|
SPC (Jun 2016)
ESG Lab (Jan 2016)
SPC (Jun 2016)
Title: 'Dual Node, Fibre Channel SAN'
Workloads: SPC-1
Benchmark Tools: SPC-1 Workload Generator
Hardware: All-Flash Lenovo x3650, 2-node cluster, FC-connected, SSY 10.0, 4x All-Flash Dell MD1220 SAS Storage Arrays
SPC (Jun 2016)
Title: 'Dual Node, High Availability, Hyper-converged'
Workloads: SPC-1
Benchmark Tools: SPC-1 Workload Generator
Hardware: All-Flash Lenovo x3650, 2-node cluster, FC-interconnect, SSY 10.0
ESG Lab (Jan 2016)
Title: 'DataCore Application-adaptive Data Infrastructure Software'
Workloads: OLTP
Benchmark Tools: IOmeter
Hardware: Hybrid (Tiered) Dell PowerEdge R720, 2-node cluster, SSY 10.0
|
N/A
No Scale Computing HC3 validated test reports have been published in 2016/2017/2018/2019.
|
StorageReview (aug 2018, aug 2016)
ESG Lab (aug 2018, apr 2016)
Evaluator Group (oct 2018, jul 2017, aug 2016)
StorageReview (Aug 2018)
Title: 'VMware vSAN with Intel Optane Review'
Workloads: MySQL OLTP, MSSQL OLTP, Generic profiles
Benchmark Tools: Sysbench (MySQL), TPC-C (MSSQL), Vdbench (generic)
Hardware: All-Flash Supermicro’s 2029U-TN24R4T+, 4-node cluster, vSAN 6.7
ESG Lab (Aug 2018)
Title: 'Optimize VMware vSAN with Western Digital NVMe SSDs and Supermicro Servers'.
Workloads: MSSQL OLTP
Benchmark Tools: HammerDB (MSSQL)
Hardware: All-Flash SuperMicro BigTwin, 4-node cluster, vSAN 6.6.1; All-Flash Lenovo X3650M5, 4-node cluster, vSAN 6.1
Evaluator Group (Jul 2017/Oct 2018)
Title: 'IOmark-VM-HC Test Report'
Workloads: Mix (MS Exchange, Olio, Web, Database)
Benchmark Tools: IOmark-VM (all)
Hardware: All-Flash Intel R2208WF, 4-node cluster, vSAN 6.6/6.7
Storage Review (Aug 2016)
Title: 'VMware VSAN 6.2 All-Flash Review'
Workloads: MySQL OLTP, MSSQL OLTP
Benchmark Tools: Sysbench (MySQL), TPC-C (MSSQL)
Hardware: All-Flash Dell PowerEdge R730xd, 4-node cluster, vSAN 6.2
Evaluator Group (Aug 2016)
Title: 'IOmark-VM-HC Test Report'
Workloads: Mix (MS Exchange, Olio, Web, Database)
Benchmark Tools: IOmark-VM (all)
Hardware: All-Flash Intel S2600WT, 4-node and 6-node cluster, vSAN 6.2
ESG Lab (Apr 2016)
Title: 'Optimize VMware Virtual SAN 6 with SanDisk SSDs'.
Workloads: MSSQL OLTP
Benchmark Tools: HammerDB (MSSQL)
Hardware: Hybrid/All-Flash Lenovo X3650M5, 4-node cluster, vSAN 6.2
|
|
Evaluation Methods
Details
|
Free Trial (30-days)
Proof-of-Concept (PoC; up to 12 months)
SANsymphony is freely downloadble after registering online and offers full platform support (complete Enterprise feature set) but is scale (4 nodes), capacity (16TB) and time (30 days) restricted, what all can be expanded upon request. The free trial version of SANsymphony can be installed on all commodity hardware platforms that meet the hardware requirements.
For more information please go here: https://www.datacore.com/try-it-now/
|
Public Facing Clusters
Proof-of-Concept (PoC)
|
Free Trial (60-days)
Online Lab
Proof-of-Concept (POC)
vSAN Evaluation is freely downloadble after registering online. Because it is embedded in the hypervisor, the free trial includes vSphere and vCenter Server. vSAN Evaluation can be installed on all commodity hardware platforms that meet the hardware requirements. vSAN Evaluation use is time-restricted (60-days). vSAN Evaluation is not for production environments.
VMware also offers a vSAN hosted hands-on lab that lets you deploy, configure and manage vSAN in a contained environment, after registering online.
|
|
|
|
Deploy |
|
|
Deployment Architecture
Details
|
Single-Layer
Dual-Layer
Single-Layer = servers function as compute nodes as well as storage nodes.
Dual-Layer = servers function only as storage nodes; compute runs on different nodes.
Single-Layer:
- SANsymphony is implemented as virtual machine (VM) or in case of Hyper-V as service layer on Hyper-V parent OS, managing internal and/or external storage devices and providing virtual disks back to the hypervisor cluster it is implemented in. DataCore calls this a hyper-converged deployment.
Dual-Layer:
- SANsymphony is implemented as bare metal nodes, managing external storage (SAN/NAS approach) and providing virtual disks to external hosts which can be either bare metal OS systems and/or hypervisors. DataCore calls this a traditional deployment.
- SANsymphony is implemented as bare metal nodes, managing internal storage devices (server-SAN approach) and providing virtual disks to external hosts which can be either bare metal OS systems and/or hypervisors. DataCore calls this a converged deployment.
Mixed:
- SANsymphony is implemented in any combination of the above 3 deployments within a single management entity (Server Group) acting as a unified storage grid. DataCore calls this a hybrid-converged deployment.
|
Single-Layer
Single-Layer = servers function as compute nodes as well as storage nodes.
Dual-Layer = servers function only as storage nodes; compute runs on different nodes.
|
Single-Layer (primary)
Dual-Layer (secondary)
Single-Layer: VMware vSAN is meant to be used as a storage platform as well as a compute platform at the same time. This effectively means that applications, hypervisor and storage software are all running on top of the same server hardware (=single infrastructure layer).
VMware vSAN can partially serve in a dual-layer model by providing storage also to other vSphere hosts within the same cluster that do not contribute storage to vSAN themselves or to bare metal hosts. However, this is not a primary use case and also requires the other vSphere hosts to have vSAN enabled (Please view the compute-only scale-out option for more information).
|
|
Deployment Method
Details
|
BYOS (some automation)
BYOS = Bring-Your-Own-Server-Hardware
DataCore SANsymphony is made easy by providing a very straightforward implementation approach.
|
Turnkey (very fast; highly automated)
Because of the ready-to-go Hyper Converged Infrastructure (HCI) building blocks and the setup wizard provided by Scale Computing, customer deployments can be executed in hours instead of days.
|
BYOS (fast, some automation)
Pre-installed (very fast, turnkey approach)
There are four methods to deploy vSAN:
1. Build-Your-Own.
2. vSAN Ready Nodes (Pre-installed).
3. vSAN Ready Nodes (non pre-installed).
4. Hardware Appliances aka HCI (Dell VxRail / Lenovo VX Series).
Each method has a different level of effort involved; the method that suits the end-user organization best is based on the technical level of the admin team, the IT architecture and state, as well as the desired level of customization. Where the 'Hardware Appliances' allow for the least amount of customization and the 'Build-Your-Own' for the most, in reality the majority of end-users choose either 'Pre-Installed vSAN Ready Nodes' or 'Hardware Appliances'.
Because of the tight integration with the VMware vSphere platform, vSAN itself is very easy to install and configure (just a few clicks in the vSphere GUI)
vSAN 6.7 U1 introduced a Quickstart wizard in the vSphere Client. The Quickstart workflow guides the end user through the deployment process for vSAN and non-vSAN clusters, and covers every aspect of the initial configuration, such as host, network, and vSphere settings. Quickstart also plays a part in the ongoing expansion of a vSAN cluster by allowing an end user to add additional hosts to the cluster.
BYOS = Bring-Your-Own-Server-Hardware
|
|
|
Workload Support
|
|
|
|
|
|
|
Virtualization |
|
|
Hypervisor Deployment
Details
|
Virtual Storage Controller
Kernel (Optional for Hyper-V)
The SANsymphony Controller is deployed as a pre-configured Virtual Machine on top of each server that acts as a part of the SANsymphony storage solution and commits its internal storage and/or externally connected storage to the shared resource pool. The Virtual Storage Controller (VSC) can be configured direct access to the physical disks, so the hypervisor is not impeding the I/O flow.
In Microsoft Hyper-V environments the SANsymphony software can also be installed in the Windows Server Root Partition. DataCore does not recommend installing SANsymphony in a Hyper-V guest VM as it introduces virtualization layer overhead and obstructs DataCore Software from directly accessing CPU, RAM and storage. This means that installing SANsymphony in the Windows Server Root Partition is the preferred deployment option. More information about the Windows Server Root Partition can be found here: https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/role/hyper-v-server/architecture
The DataCore software can be installed on Microsoft Windows Server 2019 or lower (all versions down to Microsoft Windows Server 2012/R2).
Kernel Integrated, Virtual Controller and VIB are each distributed architectures, having one active component per virtualization host that work together as a group. All three architectures are capable of delivering a complete set of storage services and good performance. Kernel Integrated solutions reside within the protected lower layer, VIBs reside just above the protected kernel layer, and Virtual Controller solutions reside in the upper user layer. This makes Virtual Controller solutions somewhat more prone to external actions (eg. most VSCs do not like snapshots). On the other hand Kernel Integrated solutions are less flexible because a new version requires the upgrade of the entire hypervisor platform. VIBs have the middle-ground, as they provide more flexibility than kernel integrated solutions and remain relatively shielded from the user level.
|
KVM User Space
SCRIBE runs in KVM user space. Scale Computing made a conscious decision not to make SCRIBE kernel integrated in order to avoid the risk that storage problems would cause a system panic meaning that an entire node could go down as a result.
|
Kernel Integrated
vSAN is embedded into the VMware hypervisor. This means it does not require any Controller VMs to be deployed on top of the hypervisor platform.
Kernel Integrated, Virtual Controller and VIB are each distributed architectures, having one active component per virtualization host that work together as a group. All three architectures are capable of delivering a complete set of storage services and good performance. Kernel Integrated solutions reside within the protected lower layer, VIBs reside just above the protected kernel layer, and Virtual Controller solutions reside in the upper user layer. This makes Virtual Controller solutions somewhat more prone to external actions (eg. most VSCs do not like snapshots). On the other hand Kernel Integrated solutions are less flexible because a new version requires the upgrade of the entire hypervisor platform. VIBs have the middle-ground, as they provide more flexibility than kernel integrated solutions and remain relatively shielded from the user level.
|
|
Hypervisor Compatibility
Details
|
VMware vSphere ESXi 5.5-7.0U1
Microsoft Hyper-V 2012R2/2016/2019
Linux KVM
Citrix Hypervisor 7.1.2/7.6/8.0 (XenServer)
'Not qualified' means there is no generic support qualification due to limited market footprint of the product. However, a customer can always individually qualify the system with a specific SANsymphony version and will get full support after passing the self-qualification process.
Only products explicitly labeled 'Not Supported' have failed qualification or have shown incompatibility.
|
Linux KVM-based
NEW
ScaleComputing HC3 uses its own proprietary HyperCore operating system and KVM-based hypervisor.
SCRIBE is an integral part of the Linux KVM platform to enable it to own the full software stack. As VMware and Microsoft dont allow such a tight integration, SCRIBE cannot be used with any other hypervisor platform.
Scale Computing HC3 supports a single hypervisor in contrast to other SDS/HCI products that support multiple hypervisors.
The Scale Computing HC3 hypervisor fully supports the following Guest operating systems:
Windows Server 2019
Windows Server 2016
Windows Server 2012 R2
Windows 10
Windows 8.1
CentOS Enterprise Linux
RHEL Enterprise Linux
Ubuntu Server
FreeBSD
SUSE Linux Enterprise
Fedora
Versions supported are versions currently supported by the operating system manufacturer.
SCRIBE = Scale Computing Reliable Independent Block Engine
|
VMware vSphere ESXi 7.0 U1
NEW
VMware vSAN is an integral part of the VMware vSphere platform; As such it cannot be used with any other hypervisor platform.
vSAN supports a single hypervisor in contrast to other SDS/HCI products that support multiple hypervisors.
|
|
Hypervisor Interconnect
Details
|
iSCSI
FC
The SANsymphony software-only solution supports both iSCSI and FC protocols to present storage to hypervisor environments.
DataCore SANsymphony supports:
- iSCSI (Switched and point-to-point)
- Fibre Channel (Switched and point-to-point)
- Fibre Channel over Ethernet (FCoE)
- Switched, where host uses Converged Network Adapter (CNA), and switch outputs Fibre Channel
|
Libscribe
In order to read/write from/to Scale Computing HC3 block devices (aka Virtual SCRIBE Devices or VSD for short) the Libscribe component needs to be installed in KVM on each physical host. Libscribe is part of the QEMU process and presents virtual block devices to the VM. Because Libscribe is a QEMU block driver, SCRIBE is a supported device type and qemu-img commands work by default.
Although a virtIO driver doesnt need to be installed perse in each VM, it is highly recommended as I/O performance benefits greatly from it. IO submission takes place via the Linux Native Asynchronous I/O (AIO) that is present in KVM.
Shared storage devices in virtual Windows Clusters are supported.
QEMU = Quick Emulator
|
vSAN (incl. WSFC)
VMware uses a propietary protocol for vSAN.
vSAN 6.1 and upwards support the use of Microsoft Failover Clustering (MSFC). This includes MS Exchange DAG and SQL Always-On clusters when a file share witness quorum is used. The use of a failover clustering instance (FCI) is not supported.
vSAN 6.7 and upwards support Windows Server Failover Clustering (WSFC) by building WSFC targets on top of vSAN iSCSI targets. vSAN iSCSI target service supports SCSI-3 Persistent Reservations for shared disks and transparent failover for WSFC. WSFC can run on either physical servers or VMs.
vSAN 6.7 U3 introduced native support for SCSI-3 Persistent Reservations (PR), which enables Windows Server Failover Clusters (WSFC) to be directly deployed on native vSAN VMDKs. This capability enables migrations from legacy deployments on physical RDMs or external storage protocols to VMware vSAN.
|
|
|
|
Bare Metal |
|
|
Bare Metal Compatibility
Details
|
Microsoft Windows Server 2012R2/2016/2019
Red Hat Enterprise Linux (RHEL) 6.5/6.6/7.3
SUSE Linux Enterprise Server 11.0SP3+4/12.0SP1
Ubuntu Linux 16.04 LTS
CentOS 6.5/6.6/7.3
Oracle Solaris 10.0/11.1/11.2/11.3
Any operating system currently not qualified for support can always be individually qualified with a specific SANsymphony version and will get full support after passing the self-qualification process.
SANsymphony provides virtual disks (block storage LUNs) to all of the popular host operating systems that use standard disk drives with 512 byte or 4K byte sectors. These hosts can access the SANsymphony virtual disks via SAN protocols including iSCSI, Fibre Channel (FC) and Fibre Channel over Ethernet (FCoE).
Mainframe operating systems such as IBM z/OS, z/TPF, z/VSE or z/VM are not supported.
SANsymphony itself runs on Microsoft Windows Server 2012/R2 or higher.
|
N/A
Scale Computing HC3 does not support any non-hypervisor platforms.
|
Many
vSAN iSCSI Service enables hosts and physical workloads that reside outside the vSAN cluster to access the vSAN datastore by providing highly available block storage as iSCSI LUNs. The physical workloads can be stand-alone servers, Windows Failover Clusters (including MSSQL) or Oracle RAC.
vSAN iSCSI Service does not support other vSphere or ESXi clients or initiators, third
party hypervisors, or migrations using raw device mapping (RDMs).
vSAN 6.7 and upwards support Windows Server Failover Clustering (WSFC) by building WSFC targets on top of vSAN iSCSI targets. vSAN iSCSI target service supports SCSI-3 Persistent Reservations for shared disks and transparent failover for WSFC. WSFC can run on either physical servers or VMs.
|
|
Bare Metal Interconnect
Details
|
iSCSI
FC
FCoE
|
N/A
Scale Computing HC3 does not support any non-hypervisor platforms.
|
iSCSI
vSAN iSCSI block storage acts as one or more targets for Windows or Linux operating systems running on a bare metal (physical) server.
vSAN iSCSI Service does not support other vSphere or ESXi clients or initiators, third-party hypervisors, or migrations using raw device mapping (RDMs).
vSAN 6.7 and upwards support Windows Server Failover Clustering (WSFC) by building WSFC targets on top of vSAN iSCSI targets. vSAN iSCSI target service supports SCSI-3 Persistent Reservations for shared disks and transparent failover for WSFC. WSFC can run on either physical servers or VMs.
vSAN 6.7 U3 enhances the vSAN iSCSI service by allowing dynamic resizing of iSCSI LUNs without disruption.
|
|
|
|
Containers |
|
|
Container Integration Type
Details
|
Built-in (native)
DataCore provides its own Volume Plugin for natively providing Docker container support, available on Docker Hub.
DataCore also has a native CSI integration with Kubernetes, available on Github.
|
N/A
Scale Computing HC3 does not officially support any container platforms.
|
Built-in (Hypervisor-based, vSAN supported)
VMware vSphere Docker Volume Service (vDVS) technology enables running stateful containers backed by storage technology of choice in a vSphere environment.
vDVS comprises of Docker plugin and vSphere Installation Bundle which bridges the Docker and vSphere ecosystems.
vDVS abstracts underlying enterprise class storage and makes it available as docker volumes to a cluster of hosts running in a vSphere environment. vDVS can be used with enterprise class storage technologies such as vSAN, VMFS, NFS and VVol.
vSAN 6.7 U3 introduced support for VMware Cloud Native Storage (CNS). When Cloud Native Storage is used, persistent storage for containerized stateful applications can be created that are capable of surviving restarts and outages. Stateful containers orchestrated by Kubernetes can leverage storage exposed by vSphere (vSAN, VMFS, NFS) while using standard Kubernetes volume, persistent volume, and dynamic provisioning primitives.
|
|
Container Platform Compatibility
Details
|
Docker CE/EE 18.03+
Docker EE = Docker Enterprise Edition
|
N/A
Scale Computing HC3 does not officially support any container platforms.
|
Docker CE 17.06.1+ for Linux on ESXi 6.0+
Docker EE/Docker for Windows 17.06+ on ESXi 6.0+
Docker CE = Docker Community Edition
Docker EE = Docker Enterprise Edition
|
|
Container Platform Interconnect
Details
|
Docker Volume plugin (certified)
The DataCore SDS Docker Volume plugin (DVP) enables Docker Containers to use storage persistently, in other words enables SANsymphony data volumes to persist beyond the lifetime of both a container or a container host. DataCore leverages SANsymphony iSCSI and FC to provide storage to containers. This effectively means that the hypervisor layer is bypassed.
The Docker SDS Volume plugin (DVP) is officially 'Docker Certified' and can be downloaded from the Docker Hub. The plugin is installed inside the Docker host, which can be either a VM or a Bare Metal Host connect to a SANsymphony storage cluster.
For more information please go to: https://hub.docker.com/plugins/datacore-sds-volume-plugin
The Kubernetes CSI plugin can be downloaded from GitHub. The plugin is automatically deployed as several pods within the Kubernetes system.
For more information please go to: https://github.com/DataCoreSoftware/csi-plugin
Both plugins are supported with SANsymphony 10 PSP7 U2 and later.
|
N/A
Scale Computing HC3 does not officially support any container platforms.
|
Docker Volume Plugin (certified) + VMware VIB
vSphere Docker Volume Service (vDVS) can be used with VMware vSAN, as well as VMFS datastores and NFS datastores served by VMware vSphere-compatible storage systems.
The vSphere Docker Volume Service (vDVS) installation has two parts:
1. Installation of the vSphere Installation Bundle (VIB) on ESXi.
2. Installation of Docker plugin on the virtualized hosts (VMs) where you plan to run containers with storage needs.
The vSphere Docker Volume Service (vDVS) is officially 'Docker Certified' and can be downloaded from the online Docker Store.
|
|
Container Host Compatibility
Details
|
Virtualized container hosts on all supported hypervisors
Bare Metal container hosts
The DataCore native plug-ins are container-host centric and as such can be used across all SANsymphony-supported hypervisor platforms (VMware vSphere, Microsoft Hyper-V, KVM, XenServer, Oracle VM Server) as well as on bare metal platforms.
|
N/A
Scale Computing HC3 does not officially support any container platforms.
|
Virtualized container hosts on VMware vSphere hypervisor
Because the vSphere Docker Volume Service (vDVS) and vSphere Cloud Provider (VCP) are tied to the VMware Sphere platform, they cannot be used for bare metal hosts running containers.
|
|
Container Host OS Compatbility
Details
|
Linux
All Linux versions supported by Docker CE/EE 18.03+ or higher can be used.
|
N/A
Scale Computing HC3 does not officially support any container platforms.
|
Linux
Windows 10 or Windows Server 2016
Any Linux distribution running version 3.10+ of the Linux kernel can run Docker.
vSphere Storage for Docker can be installed on Windows Server 2016/Windows 10 VMs using the PowerShell installer.
|
|
Container Orch. Compatibility
Details
|
Kubernetes 1.13+
|
N/A
Scale Computing HC3 does not officially support any container platforms.
|
VCP: Kubernetes 1.6.5+ on ESXi 6.0+
CNS: Kubernetes 1.14+
vSAN 6.7 U3 introduced support for VMware Cloud Native Storage (CNS).
When Cloud Native Storage (CNS) is used, persistent storage for containerized stateful applications can be created that are capable of surviving restarts and outages. Stateful containers orchestrated by Kubernetes can leverage storage exposed by vSphere (vSAN, VMFS, NFS, vVols) while using standard Kubernetes volume, persistent volume, and dynamic provisioning primitives.
VCP = vSphere Cloud Provider
CSI = Container Storage Interface
|
|
Container Orch. Interconnect
Details
|
Kubernetes CSI plugin
The Kubernetes CSI plugin provides several plugins for integrating storage into Kubernetes for containers to consume.
DataCore SANsymphony provides native industry standard block protocol storage presented over either iSCSI or Fibre Channel. YAML files can be used to configure Kubernetes for use with DataCore SANsymphony.
|
N/A
Scale Computing HC3 does not officially support any container platforms.
|
Kubernetes Volume Plugin
The VMware vSphere Container Storage Interface (CSI) Volume Driver for Kubernetes leverages vSAN block storage and vSAN file shares to provide scalable, persistent storage for stateful applications.
Kubernetes contains an in-tree CSI Volume Plug-In that allows the out-of-tree VMware vSphere CSI Volume Driver to gain access to containers and provide persistent-volume storage. The plugin runs in a pod and dynamically provisions requested PersistentVolumes (PVs) using vSAN block storage and vSAN native files shares dynamically provisioned by VMware vSAN File Services.
The VMware vSphere CSI Volume Driver requires Kubernetes v1.14 or later and VMware vSAN 6.7 U3 or later. vSAN File Services requires VMware vSAN/vSphere 7.0.
vSphere Cloud Provider (VCP) for Kubernetes allows Pods to use enterprise grade persistent storage. VCP supports every storage primitive exposed by Kubernetes:
- Volumes
- Persistent Volumes (PV)
- Persistent Volumes Claims (PVC)
- Storage Class
- Stateful Sets
Persistent volumes requested by stateful containerized applications can be provisioned on vSAN, vVol, VMFS or NFS datastores.
|
|
|
|
VDI |
|
|
VDI Compatibility
Details
|
VMware Horizon
Citrix XenDesktop
There is no validation check being performed by SANsymphony for VMware Horizon or Citrix XenDesktop VDI platforms. This means that all versions supported by these vendors are supported by DataCore.
|
Citrix XenDesktop
Parallels RAS
Leostream
Scale Computing HC3 HyperCore is a Citrix Ready platform. XenDesktop 7.6 LTSR, 7.8 and 7.9 are officially supported.
Scale Computing HC3 also actively supports the following desktop virtualization software:
- Parallels Remote Application Server (RAS);
- Leostream (=connection management).
A joint Reference Configuration white paper for Parallels RAS on Scale Computing HC3 was published in June 2019.
A joint Quick Start with Scale Computing HC3 and Leostream white paper was released in March 2019.
Since Scale Computing HC3 does not support the VMware vSphere hypervisor, VMware Horizon is not an option.
|
VMware Horizon
Citrix XenDesktop
VMware has vSAN related Reference Architecture whitepapers available for both VMware Horizon and Citrix VDI platforms.
|
|
|
VMware: 110 virtual desktops/node
Citrix: 110 virtual desktops/node
DataCore has not published any recent VDI reference architecture whitepapers. The only VDI related paper that includes a Login VSI benchmark dates back to december 2010. There a 2-node SANsymphony cluster was able to sustain a load of 220 VMs based on the Login VSI 2.0.1 benchmark.
|
Workspot: 40 virtual desktops/node
Workspot VDI 2.0: Load bearing number is based on Login VSI tests performed on hybrid HC2150 appliances using 2vCPU Windows 7 desktops and the Knowledge Worker profile.
For detailed information please view the corresponding whitepaper. Please note that this technical whitepaper is dated August 2016 and that Workspot VDI 2.0 no longer exists. Workspots current portfolio only includes cloud solutions that run in Microsoft Azure.
Scale Computing has not published any Reference Architecture whitepapers for the Citrix XenDesktop platform.
|
VMware: up to 200 virtual desktops/node
Citrix: up to 90 virtual desktops/node
VMware Horizon 7.0: Load bearing number is based on Login VSI tests performed on all-flash rack servers using 2vCPU Windows 7 desktops and the Knowledge Worker profile.
Citrix XenDesktop 7.9: Load bearing number is based on Login VSI tests performed on hybrid VxRail 160 appliances using 2vCPU Windows 7 desktops and the Knowledge Worker profile.
For detailed information please read the corresponding whitepapers.
|
|
|
Server Support
|
|
|
|
|
|
|
Server/Node |
|
|
Hardware Vendor Choice
Details
|
Many
SANsymphony runs on all server hardware that supports x86 - 64bit.
DataCore provides minimum requirements for hardware resources.
|
Lenovo (native and OEM)
SuperMicro (native)
Scale Computing leverages both Lenovo and SuperMicro server hardware as building blocks for is native HC3 appliances:
HC1200 is Supermicro server hardware
HC1250 is Supermicro server hardware
HC1250D is Lenovo server hardware
HC1250DF is Lenovo server hardware
HC5250D is Lenovo server hardware
Scale Computing has maintained a partnership with MBX Systems since 2012. MBX Systems is a hardware integrator based in the US, with headquarters both in Chicago and San Jose, that is tasked with assembling the native HC3 appliances.
In May 2018 Scale Computing and Lenovo entered in an OEM partnership to provide Scale Computing HC3 software on Lenovo ThinkSystem tower (ST250) or rack servers (SR630, SR650, SR250) with a wide variety of hardware choices (eg. CPU and RAM).
|
Many
The following server hardware vendors provide vSAN Ready Nodes: Cisco, DELL, Fujitsu, Hitachi, HPE, Huawei, Lenovo, Supermicro.
|
|
|
Many
SANsymphony runs on all server hardware that supports x86 - 64bit.
DataCore provides minimum requirements for hardware resources.
|
4 Native Models
NEW
There are 4 native model series to choose from:
HE100 Edge Computing/Remote offices, stores, warehouses, labs, classrooms, ships
HE500 Edge Computing/Small remote sites/DR
HC1200 SMB/Midmarket
HC5000 Enterprise/Distributed Enterprise
There are 4 Lenovo model series to choose from:
ST250 Edge, Backup
SR250 Edge
SR630 Mid-market
SR650 Mid-market, High Capacity
|
Many
The following server hardware vendors provide vSAN Ready Nodes: Cisco, DELL, Fujitsu, Hitachi, HPE, Huawei, Lenovo, Supermicro.
|
|
|
1, 2 or 4 nodes per chassis
Note: Because SANsymphony is mostly hardware agnostic, customers can opt for multiple server densities.
Note: In most cases 1U or 2U building blocks are used.
Also Super Micro offers 2U chassis that can house 4 compute nodes.
Denser nodes provide a smaller datacenter footprint where space is a concern. However, keep in mind that the footprint for other datacenter resources such as power and heat and cooling is not necessarily reduced in the same way and that the concentration of nodes can potentially pose other challenges.
|
1 node per chassis
NEW
Scale Computing HE100 appliances are Intel NUCs.
Scale Computing HE500 appliances are either 1U building blocks or Towers.
Scale Computing HC1200 appliances are 1U building blocks.
Scale Computing HC5000 appliances are 2U building blocks.
Lenovo HC3 Edge ST250 appliances are Towers.
Lenovo HC3 Edge SR250 appliances are 1U building blocks.
Lenovo HC3 Edge SR630 appliances are 1U building blocks.
Lenovo HC3 Edge SR650 appliances are 2U building blocks.
Denser nodes provide a smaller datacenter footprint where space is a concern. However, keep in mind that the footprint for other datacenter resources such as power and heat and cooling is not necessarily reduced in the same way and that the concentration of nodes can potentially pose other challenges.
NUC = Next Unit of Computing
|
1, 2 or 4 nodes per chassis
Because vSAN has an extensive HCL, customers can opt multiple server densities.
Note: vSAN Ready Nodes are mostly based on standard 2U rack server configurations.
Denser nodes provide a smaller datacenter footprint where space is a concern. However, keep in mind that the footprint for other datacenter resources such as power and heat and cooling is not necessarily reduced in the same way and that the concentration of nodes can potentially pose other challenges.
|
|
|
Yes
DataCore does not explicitly recommend using different hardware platforms, but as long as the hardware specs are somehow comparable, there is no reason to insist on one or the other hardware vendor. This is proven in practice, meaning that some customers run their productive DataCore environment on comparable servers of different vendors.
|
Yes
Scale Computing allows for mixing different server hardware in a single HC3 cluster, including nodes from different generations.
|
Yes
Mixing is allowed, although this is not advised within a single vSAN cluster for a consistent performance experience.
|
|
|
|
Components |
|
|
|
Flexible
Minimum hardware requirements need to be fulfilled.
For more information please go to: https://www.datacore.com/products/sansymphony/tech/compatibility/
|
Flexible: up to 3 options (native); extensive (Lenovo OEM)
Scale Computing HE100-series CPU options:
HE150: 1x Intel i3-10110U (2 cores); 1x Intel i5-10210U (4 cores); 1x i7-10710U (6 cores)
Scale Computing HE500-series CPU options:
HE500: 1x Intel Xeon E-2124 (4 cores); 1x Intel Xeon E-2134 (4 cores); 1x Intel Xeon E-2136 (6 cores)
HE550: 1x Intel Xeon E-2124 (4 cores); 1x Intel Xeon E-2134 (4 cores); 1x Intel Xeon E-2136 (6 cores)
HE550F: 1x Intel Xeon E-2124 (4 cores); 1x Intel Xeon E-2134 (4 cores); 1x Intel Xeon E-2136 (6 cores)
HE500T: 1x Intel Xeon E-2124 (4 cores); 1x Intel Xeon E-2134 (4 cores); 1x Intel Xeon E-2136 (6 cores)
HE550TF: 1x Intel Xeon E-2124 (4 cores); 1x Intel Xeon E-2134 (4 cores); 1x Intel Xeon E-2136 (6 cores)
Scale Computing HC1200-series CPU options:
HC1200: 1x Intel Xeon Bronze 3204 (6 cores); 1x Intel Xeon Silver 4208 (8 cores)
HC1250: 1x Intel Xeon Silver 4208 (8 cores); 2x Intel Xeon Silver 4210 (10 cores); 2x Intel Xeon Gold 6242 (16 cores)
HC1250D: 2x Intel Xeon Silver 4208 (8 cores); 2x Intel Xeon Silver 4210 (10 cores); 2x Intel Xeon Gold 6230 (20 cores); 2x Intel Xeon Gold 6242 (16 cores); 2x Intel Xeon Gold 6244 (8 cores)
HC1250DF: 2x Intel Xeon Silver 4208 (8 cores); 2x Intel Xeon Silver 4210 (10 cores); 2x Intel Xeon Gold 6230 (20 cores); 2x Intel Xeon Gold 6242 (16 cores); 2x Intel Xeon Gold 6244 (8 cores)
Scale Computing HC5000-series CPU options:
HC5200: 1x Intel Xeon Silver 4208 (8 cores); 1x Intel Xeon Silver 4210 (10 cores); 1x Intel Xeon Gold 6230 (20 cores)
HC5250D: 2x Intel Xeon Silver 4208 (8 cores); 2x Intel Xeon Silver 4210 (10 cores); 2x Intel Xeon Gold 6230 (20 cores); 2x Intel Xeon Gold 6242 (16 cores)
Scale Computing HC1200 and HC5000 series nodes ship with 2nd generation Intel Xeon Scalable (Cascade Lake) processors.
Lenovo HC3 Edge CPU options:
ST250: 1x Intel Xeon E-2100
SR250: 1x Intel Xeon E-2100
SR630: 2x 1st or 2nd generation Intel Xeon Scalable (Skylake or Cascade Lake)
SR650: 2x 1st or 2nd generation Intel Xeon Scalable (Skylake or Cascade Lake)
|
Flexible
For each hardware component the vSAN Hardware Quick Reference Guide and the VMware vSAN Ready Nodes document provide sizing guidelines.
VMware vSphere supports 2nd generation Intel Xeon Scalable (Cascade Lake) processors in version 6.7U1 and upwards.
|
|
|
Flexible
|
Flexible: up to 8 options
Scale Computing HE100-series memory options:
HE150: 8GB, 16GB, 32GB, 64GB
Scale Computing HE500-series memory options:
HE500: 16GB, 32GB, 64GB
HE550: 16GB, 32GB, 64GB
HE550F: 16GB, 32GB, 64GB
HE500T: 16GB, 32GB, 64GB
HE500TF: 16GB, 32GB, 64GB
Scale Computing HC1200-series memory options:
HC1200: 64GB, 96GB, 128GB, 192GB, 256GB, 384GB
HC1250: 64GB, 96GB, 128GB, 192GB, 256GB, 384GB
HC1250D: 128GB, 192GB, 256GB; 384GB, 512GB, 768GB
HC1250DF: 128GB, 192GB, 256GB; 384GB, 512GB, 768GB
Scale Computing HC5000-series memory options:
HC5200: 64GB, 128GB, 192GB, 256GB; 384GB, 512GB, 768GB
HC5250D: 128GB, 192GB, 256GB; 384GB, 512GB, 768GB, 1TB, 1.5TB
Lenovo HC3 Edge series memory options:
ST250: 16GB - 64GB
SR250: 16GB - 64GB
SR630: 64GB - 768GB
SR650: 64GB - 1.5TB
|
Flexible
For each hardware component the vSAN Hardware Quick Reference Guide and the VMware vSAN Ready Nodes document provide sizing guidelines.
|
|
|
Flexible
Minimum hardware requirements need to be fulfilled.
For more information please go to: https://www.datacore.com/products/sansymphony/tech/compatibility/
|
Capacity: up to 5 options (HDD, SSD)
Fixed: Number of disks
Scale Computing HE100-series storage options:
HE150: 1x 250GB/500GB/1TB/2TB M.2 NVMe
Scale Computing HE500-series storage options:
HE500: 4x 1/2/4/8TB NL-SAS [magnetic-only]
HE550: 1x 480GB/960GB SSD + 3x 1/2/4TB NL-SAS [hybrid]
HE550F: 4x 240GB/480GB/960GB SSD [all-flash]
HE500T: 4x 1/2/4/8TB NL-SAS + 8x 4/8TB NL-SAS [magnetic-only]
HE550TF: 4x 240GB/480GB/960GB SSD [all-flash]
Scale Computing HC1200-series storage options:
HC1200: 4x 1/2/4/8/12TB NL-SAS [magnetic-only]
HC1250: 1x 480GB/960GB/1.92TB/3.84TB/7.68TB SSD + 3x 1/2/4/8/12TB NL-SAS [hybrid]
HC1250D: 1x 960GB/1.92TB/3.84TB/7.68TB SSD + 3x 1/2/4/8TB NL-SAS [hybrid]
HC1250DF: 4x 960GB/1.92TB/3.84TB/7.68TB SSD [all-flash]
Scale Computing HC5000-series storage options:
HC5200: 12x 8/12TB NL-SAS [magnetic-only]
HC5250D: 3x 960GB/1.92TB/3.84TB/7.68TB SSD + 9x 4/8TB NL-SAS [hybrid]
Lenovo HC3 Edge series storage options:
ST250: 8x 1/2/4/8TB NL-SAS [magnetic only]
ST250: 4x 960GB/1.92TB/3.84TB SSD [all-flash]
SR250: 4x 1/2/4/8TB NL-SAS [magnetic only]
SR250: 1x 960GB/1.92TB/3.84TB SSD + 3x 1/2/4/8TB NL-SAS [hybrid]
SR250: 4x 960GB/1.92TB/3.84TB SSD [all-flash]
SR630: 4x 1/2/4/8TB NL-SAS [magnetic only]
SR630: 1x 480GB/960GB/1.92TB/3.84TB/7.68TB SSD + 3x 1/2/4/8TB NL-SAS [hybrid]
SR630: 4x 1.92TB/3.84TB/7.68TB SSD [all-flash]
SR650: 3x 480GB/960GB/1.92TB/3.84TB/7.68TB SSD + 9x 1/2/4/8TB NL-SAS [hybrid]
The SSDs in all mentioned nodes are normal SSDs (non-NMVe).
SATA = NL-SAS = 7.2k RPM = High-capacity low-speed drives
|
Flexible: number of disks + capacity
For each hardware component the vSAN Hardware Quick Reference Guide and the VMware vSAN Ready Nodes document provide sizing guidelines.
vSAN 7.0 provides support for 32TB physical capacity drives. This extends the logical capacity up to 1PB when deduplication and compression is enabled.
|
|
|
Flexible
Minimum hardware requirements need to be fulfilled.
For more information please go to: https://www.datacore.com/products/sansymphony/tech/compatibility/
|
Fixed: HC1200/5000: 10GbE; HE150/500T: 1GbE
Flexible: HE500: 1/10GbE
Scale Computing HE100-series networking options:
HE150: 1x 1GbE
Scale Computing HE500-series networking options:
HE500: 4x 1GbE or 4x 10GbE SFP+
HE550: 4x 1GbE or 4x 10GbE SFP+
HE550F: 4x 1GbE or 4x 10GbE SFP+
HE500T: 2x 1GbE
HE550TF: 2x 1GbE
Scale Computing HC1200-series networking options:
HC1200: 4x 10GbE Base-T/SFP+ bonded active/passive
HC1250: 4x 10GbE Base-T/SFP+ bonded active/passive
HC1250D: 4x 10GbE Base-T/SFP+ bonded active/passive
HC1250DF: 4x 10GbE Base-T/SFP+ bonded active/passive
Scale Computing HC5000-series networking options:
HC5200: 4x 10GbE Base-T/SFP+ bonded active/passive
HC5250D:4x 10GbE Base-T/SFP+ bonded active/passive
Lenovo HC3 Edge series networking options:
ST250: 2x 1GbE
SR250: 4x 1GbE or 4x 10GbE SFP+
SR630: 4x 10GbE BaseT or 4x 10GbE SFP+
SR650: 4x 10GbE BaseT or 4x 10GbE SFP+
|
Flexible
For each hardware component the vSAN Hardware Quick Reference Guide and the VMware vSAN Ready Nodes document provide sizing guidelines.
|
|
|
NVIDIA Tesla
AMD FirePro
Intel Iris Pro
DataCore SANsymphony supports the hardware that is on the hypervisor HCL.
VMware vSphere 6.5U1 officially supports several GPUs for VMware Horizon 7 environments:
NVIDIA Tesla M6 / M10 / M60
NVIDIA Tesla P4 / P6 / P40 / P100
AMD FirePro S7100X / S7150 / S7150X2
Intel Iris Pro Graphics P580
More information on GPU support can be found in the online VMware Compatibility Guide.
Windows 2016 supports two graphics virtualization technologies available with Hyper-V to leverage GPU hardware:
- Discrete Device Assignment
- RemoteFX vGPU
More information is provided here: https://docs.microsoft.com/en-us/windows-server/remote/remote-desktop-services/rds-graphics-virtualization
The NVIDIA website contains a listing of GRID certified servers and the maximum number of GPUs supported inside a single server.
Server hardware vendor websites also contain more detailed information on the GPU brands and models supported.
|
N/A
Scale Computing HC3 currently does not provide any GPUs options.
|
NVIDIA Tesla
AMD FirePro
Intel Iris Pro
VMware vSphere 6.5U1 and up officially support several GPUs for VMware Horizon 7 environments:
NVIDIA Tesla M6 / M10 / M60
NVIDIA Tesla P4 / P6 / P40 / P100
AMD FirePro S7100X / S7150 / S7150X2
Intel Iris Pro Graphics P580
More information on GPU support can be found in the online VMware Compatibility Guide.
The NVIDIA website contains a listing of GRID certified servers and the maximum number of GPUs supported inside a single server.
Server hardware vendor websites also contain more detailed information on the GPU brands and models supported.
|
|
|
|
Scaling |
|
|
|
CPU
Memory
Storage
GPU
The SANsymphony platform allows for expanding of all server hardware resources.
|
CPU
Memory
The Scale Computing HC3 platform allows for expanding CPU and Memory hardware resources. Storage resources (the number of disks within a single node) are usually not expanded.
|
CPU
Memory
Storage
GPU
VMware allows for the on-the fly (non-disruptive) adding/removal of individual disks in existing disk groups.
There is a maximum of 5 disk groups (flash cache device + capacity devices) on an individual ESXi host participating in a vSAN cluster. In a hybrid configuration each diskgroup consists of 1 Flash Device + a maximum of 7 capacity devices. This totals to 40 devices per ESXi host, although an average rack server has room for up to only 24 devices.
|
|
|
Storage+Compute
Compute-only
Storage-only
Storage+Compute: In a single-layer deployment existing SANsymphony clusters can be expanded by adding additional nodes running SANsymphony, which adds additional compute and storage resources to the shared pool. In a dual-layer deployment both the storage-only SANsymphony clusters and the compute clusters can be expanded simultaneously.
Compute-only: Because SANsymphony leverages virtual block volumes (LUNs), storage can be presented to hypervisor hosts not participating in the SANsymphony cluster. This is also beneficial to migrations, since it allows for online storage vMotions between SANsymphony and non-SANsymphony storage platforms.
Storage-only: In a dual-layer or mixed deployment both the storage-only SANsymphony clusters and the compute clusters can be expanded independent from each other.
|
Storage+Compute
Storage-only
Storage+Compute: Existing Scale Computing HC3 clusters can be expanded by adding additional nodes, which adds additional compute and storage resources to the shared pool.
Compute-only: N/A; A Scale Computing HC3 node always takes active part in the hypervisor (compute) cluster as well as the storage cluster.
Storage-only: A Scale Computing HC3 node can be configured as a storage-only node by setting a flag and has to be performed by Scale Computing engineering (end-user organizations cannot set the flag themselves).
|
Compute+storage
Compute-only (vSAN VMKernel)
Storage+Compute: Existing vSAN clusters can be expanded by adding additional vSAN nodes, which adds additional compute and storage resources to the shared pool.
Compute-only: When the vSAN VMkernel is installed and enabled on a host that is not contributing storage but resides in the same cluster as contributing hosts, vSAN datastores can be presented to these hypervisor hosts as well. This is also beneficial to storage migrations as it allows for online storage vMotions between vSAN storage and non-vSAN storage platforms. The use of the vSAN VMkernel requires a vSAN license for this host.
Storage-only: N/A; A vSAN node always takes active part in the hypervisor (compute) cluster as well as the storage cluster.
|
|
|
1-64 nodes in 1-node increments
There is a maximum of 64 nodes within a single cluster. Multiple clusters can be managed through a single SANsymphony management instance.
|
3-8 nodes in 1-node increments
There is a maximum of 8 nodes within a single cluster. Larger clusters do exist, but must be requested and are evaluated on a per use-case basis.
|
2-64 nodes in 1-node increments
The hypervisor cluster scale-out limits still apply: 64 hosts for VMware vSphere.
|
|
Small-scale (ROBO)
Details
|
2 Node minimum
DataCore prevents split-brain scenarios by always having an active-active configuration of SANsymphony with a primary and an alternate path.
In the case SANsymphony servers are fully operating but do not see each other, the application host will still be able to read and write data via the primary path (no switch to secondary). The mirroring is interrupted because of the lost connection and the administrator is informed accordingly. All writes are stored on the locally available storage (primary path) and all changes are tracked. As soon as the connection between the SANsymphony servers is restored, the mirror will recover automatically based on these tracked changes.
Dual updates due to misconfiguration are detected automatically and data corruption is prevented by freezing the vDisk and waiting for user input to solve the conflict. Conflict solutions could be to declare one side of the mirror to be the new active data set and discarding all tracked changes at the other side, or splitting the mirror and merge the two data sets into a 3rd vDisk manually.
|
1 Node minimum
|
2 Node minimum
The use of the witness virtual appliance eliminates the requirement of a third physical node in vSAN ROBO deployments. vSAN for ROBO edition licensing is best suited for this type of deployment.
|
|
|
Storage Support
|
|
|
|
|
|
|
General |
|
|
|
Block Storage Pool
SANsymphony only serves block devices to the supported OS platforms.
|
Block Storage Pool
Scale Computing HC3 only serves block devices to the supported OS guest platforms. VMs running on HC3 have direct, block-level access to virtual SCRIBE devices (VSDs, aka virtual disks) in the clustered storage pool without the complexity or performance overhead introduced by using remote storage protocols.
A critical software component of HyperCore is the Scale Computing Reliable Independent Block Engine, known as
SCRIBE. SCRIBE is an enterprise class, clustered block storage layer, purpose built to be consumed by the HC3 embedded KVM based hypervisor directly.
SCRIBE discovers and aggregates all block storage devices across all nodes of the system into a single managed pool of storage. All data written to this pool is immediately available for read and write by any and every node in the storage system, allowing for sophisticated data redundancy, data deduplication, and load balancing schemes to be used by higher layers of the stack—such as the HyperCore
compute layer.
SCRIBE is a wide-striped storage architecture that combines all disks in the cluster into a single storage pool that is tiered between flash SSD and spinning HDD storage.
|
Object Storage File System (OSFS)
|
|
|
Partial
DataCores core approach is to provide storage resources to the applications without having to worry about data locality. But if data locality is explicitly requested, the solution can partially be designed that way by configuring the first instance of all data to be stored on locally available storage (primary path) and the mirrored instance to be stored on the alternate path (secondary path). Furthermore every hypervisor host can have a local preferred path, indicated by the ALUA path preference.
By default data does not automatically follow the VM when the VM is moved to another node. However, virtual disks can be relocated on the fly to other DataCore node without losing I/O access, but this relocation takes some time due to data copy operations required. This kind of relocation usually is done manually, but we allow automation of such tasks and can integrate with VM orchestration using PowerShell for example.
Whether data locality is a good or a bad thing has turned into a philosophical debate. Its true that data locality can prevent a lot of network traffic between nodes, because the data is physically located at the same node where the VM resides. However, in dynamic environments where VMs move to different hosts on a frequent basis, data locality in most cases requires a lot of data to be copied between nodes in order to maintain the physical VM-data relationship. The SDS/HCI vendors today that choose not to use data locality, advocate that the additional network latency is negligible.
|
None
Scale Computing HC3 is based on a shared nothing storage architecture. Scale Computing HC3 enables every drive in every node throughout the cluster to contribute to the storage performance and capacity of every virtual disk (VDS) presented by the SCRIBE storage layer. When a VM is moved to another node, data remains in place and does not follow the VM because data is stored and available across all nodes residing in the cluster.
Whether data locality is a good or a bad thing has turned into a philosophical debate. Its true that data locality can prevent a lot of network traffic between nodes, because the data is physically located at the same node where the VM resides. However, in dynamic environments where VMs move to different hosts on a frequent basis, data locality in most cases requires a lot of data to be copied between nodes in order to maintain the physical VM-data relationship. The SDS/HCI vendors today that choose not to use data locality, advocate that the additional network latency is negligible.
|
Partial
Each host within a vSAN cluster has a local memory read cache that is 0.4% of the hosts memory, up to 1GB. The read cache optimizes VDI I/O flows for example. Apart from the read-cache vSAN only uses data locality in stretched clusters to avoid high latency.
Whether data locality is a good or a bad thing has turned into a philosophical debate. Its true that data locality can prevent a lot of network traffic between nodes, because the data is physically located at the same node where the VM resides. However, in dynamic environments where VMs move to different hosts on a frequent basis, data locality in most cases requires a lot of data to be copied between nodes in order to maintain the physical VM-data relationship. The SDS/HCI vendors today that choose not to use data locality, advocate that the additional network latency is negligible.
|
|
|
Direct-attached (Raw)
Direct-attached (VoV)
SAN or NAS
VoV = Volume-on-Volume; The Virtual Storage Controller uses virtual disks provided by the hypervisor platform.
|
Direct-Attached (Raw)
Direct-attached: The software takes ownership of the unformatted physical disks available each host.
|
Direct-attached (Raw)
Remote vSAN datatstores (HCI Mesh)
NEW
The software takes ownership of the unformatted physical disks available inside the host.
VMware vSAN 7.0 U1 introduces the HCI Mesh concept. With VMware HCI Mesh a vSAN cluster can leverage the storage of remote vSAN clusters for hosting VMs without sacrificing important features such as HA and DR. Up to 5 remote vSAN datastores can be mounted by a single vSAN cluster. HCI Mesh works by using the existing vSAN VMkernel ports and transport protocols. It is full software-based and does not require any specialized hardware.
|
|
|
Magnetic-only
All-Flash
3D XPoint
Hybrid (3D Xpoint and/or Flash and/or Magnetic)
NEW
|
Magnetic-only
Hybrid (Flash+Magnetic)
All-Flash
Scale Computing HC3 appliance models storage composition:
HC1200: Magnetic-only
HC1250: Hybrid
HC1250D: Hybrid
HC1250DF: All-flash
HC5250D: Hybrid
A Magnetic-only node is called a Non-tiered node and contains 100% HDD drives and no SSD drives.
A Hybrid node is called a Tiered node and contains 25% SSD drives and 75% HDD drives.
An All-Flash node contains 100% SSD drives and no HDD drives.
|
Hybrid (Flash+Magnetic)
All-Flash
VMware Enterprise edition offers All-Flash related features Erasure Coding and Data Reduction (Deduplication+Compression).
Hybrid hosts cannot be mixed with All-Flash hosts in the same vSAN cluster.
vSAN 7.0 provides support for 32TB physical capacity drives. This extends the logical capacity up to 1PB when deduplication and compression is enabled.
|
|
Hypervisor OS Layer
Details
|
SD, USB, DOM, SSD/HDD
|
HDD or SSD (partition)
By default for each 1TB of data, 8MB is allocated for metadata. The data and metadata is stored on the physical storage devices (RSDs) and both are protected using mirroring (2N). Because metadata is this lightweight, all of the metadata of all of the online VSDs is cached in DRAM.
VSD = Virtual SCRIBE Device
RSD = Real SCRIBE Device
|
SD, USB, DOM, HDD or SSD
|
|
|
|
Memory |
|
|
|
DRAM
|
DRAM
|
DRAM
Each host within a vSAN cluster has a local memory read cache that is 0.4% of the hosts memory, up to 1GB. The read cache optimizes VDI I/O flows for example.
|
|
|
Read/Write Cache
DataCore SANsymphony accelerates reads and writes by leveraging the powerful processors and large DRAM memory inside current generation x86-64bit servers on which it runs. Up to 8 Terabytes of cache memory may be configured on each DataCore node, enabling it to perform at solid state disk speeds without the expense. SANsymphony uses a common cache pool to store reads and writes in.
SANsymphony read caching essentially recognizes I/O patterns to anticipate which blocks to read next into RAM from the physical back-end disks. That way the next request can be served from memory.
When hosts write to a virtual disk, the data first goes into DRAM memory and is later destaged to disk, often grouped with other writes to minimize delays when storing the data to the persistent disk layer. Written data stays in cache for re-reads.
The cache is cleaned on a first-in-first-out (FiFo) basis. Segment overwrites are performed on the oldest data first for both read- and write cache segment requests.
SANsymphony prevents the write cache data from flooding the entire cache. In case the write data amount runs above a certain percentage watermark of the entire cache amount, then the write cache will temporarily be switched to write-through mode in order to regain balance. This is performed fully automatically and is self-adjusting, per virtual disk as well as on a global level.
|
Read Cache
Metadata structures
By default for each 1TB of data, 8MB is allocated for metadata. The data and metadata is stored on the physical storage devices (RSDs) and both are protected using mirroring (2N). Because metadata is this lightweight, all of the metadata of all of the online VSDs is cached in DRAM.
VSD = Virtual SCRIBE Device
RSD = Real SCRIBE Device
|
Read Cache
|
|
|
Up to 8 TB
The actual size that can be configured depends on the server hardware that is used.
|
4GB+
4GB of RAM is reserved per node for the entire HC3 system to function. No specific RAM is reserved for caching but the system will use any available memory as needed for caching purposes.
|
Non-configurable
Each host within a vSAN cluster has a local memory read cache that is 0.4% of the hosts memory, up to 1GB. The read cache optimizes VDI I/O flows for example.
|
|
|
|
Flash |
|
|
|
SSD, PCIe, UltraDIMM, NVMe
|
SSD, NVMe
HyperCore-Direct for NVMe can be requested and is evaluated by Scale Computing on a per-customer scenario basis.
|
SSD, PCIe, UltraDIMM, NVMe
VMware vSAN 6.6 offers support for Intel Optane (3D XPoint technology) NVMe SSDs.
|
|
|
Persistent Storage
SANsymphony supports new TRIM / UNMAP capabilities for solid-state drives (SSD) in order to reduce wear on those devices and optimize performance.
|
Persistent Storage
|
Hybrid: Read/Write Cache
All-Flash: Write Cache + Storage Tier
In all vSAN configurations 1 separate SSD per disk group is used for caching purposes. The other disks in the disk group are used for persistent storage of data.
For all-flash configurations, the flash device(s) in the cache tier are used for write caching only (no read cache) as read performance from the capacity flash devices is more than sufficient.
Two different grades of flash devices are commonly used in an all-flash vSAN configuration: Lower capacity, higher endurance devices for the cache layer and more cost effective, higher capacity, lower endurance devices for the capacity layer. Writes are performed at the cache layer and then de-staged to the capacity layer, only as needed.
|
|
|
No limit, up to 1 PB per device
The definition of a device here is a raw flash device that is presented to SANsymphony as either a SCSI LUN or a SCSI disk.
|
Hybrid: 1-3 SSDs per node
All-Flash: 4 SSDs per node
Flash devices are not mandatory in a Scale Computing HC3 solution.
Each HC1200 hybrid node has 1 SSD drive attached.
Each HC1250 all-flash node has 4 SSD drives attached.
Each HC5250 node has 3 SSD drives attached.
An HC1250 all-flash node can have a maximum of 15.36TB of raw SSD storage attached.
|
Hybrid: 1-5 Flash devices per node (1 per disk group)
All-Flash: 40 Flash devices per node (8 per disk group,1 for cache and 7 for capacity)
VMware vSAN 7.0 provides support for large flash devices (up to 32TB).
|
|
|
|
Magnetic |
|
|
|
SAS or SATA
SAS = 10k or 15k RPM = Medium-capacity medium-speed drives
SATA = NL-SAS = 7.2k RPM = High-capacity low-speed drives
In this case SATA = NL-SAS = MDL SAS
|
Hybrid: SATA
SAS = 10k or 15k RPM = Medium-capacity medium-speed drives
SATA = NL-SAS = 7.2k RPM = High-capacity low-speed drives
|
Hybrid: SAS or SATA
SAS = 10k or 15k RPM = Medium-capacity medium-speed drives
SATA = NL-SAS = 7.2k RPM = High-capacity low-speed drives
VMware vSAN supports the use of 512e drives. 512e magnetic hard disk drives (HDDs) use a physical sector size of 4096 bytes, but the logical sector size emulates a sector size of 512 bytes. Larger sectors enable the integration of stronger error correction algorithms to maintain data integrity at higher storage densities.
VMware vSAN 6.7 introduced support for 4K native (4Kn) mode.
VMware vSAN 7.0 provides support for 32TB physical capacity drives.
|
|
|
Persistent Storage
|
Persistent Storage
|
Persistent Storage
|
|
Magnetic Capacity
Details
|
No limit, up to 1 PB (per device)
The definition of a device here is a raw flash device that is presented to SANsymphony as either a SCSI LUN or a SCSI disk.
|
Magnetic-only: 4 HDDs per node
Hybrid: 3 or 9 HDDs per node
Magnetic devices are not mandatory in a Scale Computing HC3 solution.
Each HC1200 magnetic-only node has 4 HDD drives attached.
Each HC1250 hybrid node has 3 HDD drives attached.
Each HC5250 hybrid node has 9 HDD drives attached.
An HC1200 magnetic-only node can have a maximum of 32TB of raw HDD storage attached.
An HC1250 hybrid node can have a maximum of 24TB of raw HDD storage attached.
An HC5250 hybrid node can have a maximum of 72TB of raw HDD storage attached.
|
1-35 SAS/SATA HDDs per host/node
|
|
|
Data Availability
|
|
|
|
|
|
|
Reads/Writes |
|
|
Persistent Write Buffer
Details
|
DRAM (mirrored)
If caching is turned on (default=on), any write will only be acknowledged back to the host after it has been succesfully stored in DRAM memory of two separate physical SANsymphony nodes. Based on de-staging algorithms each of the nodes eventually copies the written data that is kept in DRAM to the persistent disk layer. Because DRAM outperforms both flash and spinning disks the applications experience much faster write behavior.
Per default, the limit of dirty-write-data allowed per Virtual Disk is 128MB. This limit could be adjusted, but there has never been a reason to do so in the real world. Individual Virtual Disks can be configured to act in write-through mode, which means that the dirty-write-data limit is set to 0MB so effectively the data is directly written to the persistent disk layer.
DataCore recommends that all servers running SANsymphony software are UPS protected to avoid data loss through unplanned power outages. Whenever a power loss is detected, the UPS automatically signals this to the SANsymphony node and write behavior is switched from write-back to write-through mode for all Virtual Disks. As soon as the UPS signals that power has been restored, the write behavior is switched to write-back again.
|
Flash/HDD
The persisent write buffer depends on the type of the block storage pool (Flash or HDD).
|
Flash Layer (SSD;PCIe;NVMe)
|
|
Disk Failure Protection
Details
|
2-way and 3-way Mirroring (RAID-1) + opt. Hardware RAID
DataCore SANsymphony software primarily uses mirroring techniques (RAID-1) to protect data within the cluster. This effectively means the SANsymphony storage platform can withstand a failure of any two disks or any two nodes within the storage cluster. Optionally, hardware RAID can be implemented to enhance the robustness of individual nodes.
SANsymphony supports Dynamic Data Resilience. Data redundancy (none, 2-way or 3-way) can be added or removed on-the-fly at the vdisk level.
A 2-way mirror acts as active-active, where both copies are accessible to the host and written to. Updating of the mirror is synchronous and bi-directional.
A 3-way mirror acts as active-active-backup, where the active copies are accessible to the host and written to, and the backup copy is inaccessible to the host (paths not presented) and written to. Updating of the mirrors active copies is synchronous and bi-directional. Updating of the mirrors backup copy is synchronous and unidirectional (receive only).
In a 3-way mirror the backup copy should be independent of existing storage resources that are used for the active copies. Because of the synchronous updating all mirror copies should be equal in storage performance.
When in a 3-way mirror an active copy fails, the backup copy is promoted to active state. When the failed mirror copy is repaired, it automatically assumes a backup state. Roles can be changed manually on-the-fly by the end-user.
DataCore SANsymphony 10.0 PSP9 U1 introduced System Managed Mirroring (SMM). A multi-copy virtual disk is created from a storage source (disk pool or pass-through disk) from two or three DataCore Servers in the same server group. Data is synchronously mirrored between the servers to maintain redundancy and high availability of the data. System Managed Mirroring (SMM) addresses the complexity of managing multiple mirror paths for numerous virtual disks. This feature also addresses the 256 LUN limitation by allowing thousands of LUNs to be handled per network adapter. The software transports data in a round robin mode through available mirror ports to maximize throughput and can dynamically reroute mirror traffic in the event of lost ports or lost connections. Mirror paths are automatically and silently managed by the software.
The System Managed Mirroring (SMM) feature is disabled by default. This feature may be enabled or disabled for the server group.
With SANsymphony 10.0 PSP10 adds seamless transition when converting Mirrored Virtual Disks (MVD) to System Managed Mirroring (SMM). Seamless transition converts and replaces mirror paths on virtual disks in a manner in which there are no momentary breaks in mirror paths.
|
2-way Mirroring (Network RAID-10)
Within a Scale Computing HC cluster all data is written twice to the block storage pool for redundancy (2N). It is equivalent to Network RAID-10, as the two data chunks are placed on separate physical disks of separate physical nodes within the cluster. This protects against 1 disk failure and 1 node failure at the same time, and aggregates the I/O and throughput capabilities of all the individual disks in the cluster (= wide striping).
Once an RSD fails, the system re-mirrors the data using the free space in the HC3 cluster as a hot spare. Because all physical disks contain data, rebuilds are very fast. Scale Computing HC3 is often to detect the deteriorated state of a physical storage device in advance and pro-actively copy data to other devices ahead of an actual failure.
Currently only 1 Replica (2N) can be maintained, as the setting is not configurable for end-users.
|
Hybrid/All-Flash: 0-3 Replicas (RAID1; 1N-4N), Host Pinning (1N)
All-Flash: Erasure Coding (RAID5-6)
VMwares implementation of Erasure Coding only applies to All-Flash configurations and is similar to RAID-5 and RAID-6 protection. RAID-5 requires a minimum of 4 nodes (3+1) and protects against a single node failure; RAID-6 requires a minimum of 6 nodes and protects against two node failures. Erasure Coding is only available in vSAN Enterprise and Advanced editions, and is only configurable for All-flash configurations.
VMwares implementation of replicas is called NumberOfFailuresToTolerate (0, 1, 2 or 3). It applies to both disk and node failures. Optionally, nodes can be assigned to a logical grouping called Failure Domains. The use of 0 Replicas within a single site is only available when using Stretched Clustering, which is only available in the Enterprise editions.
Replicas: Before any write is acknowledged to the host, it is synchronously replicated on an adjacent node. All nodes in the cluster participate in replication. This means that with 2N one instance of data that is written is stored on one node and another instance of that data is stored on a different node in the cluster. For both instances this happens in a fully distributed manner, in other words, there is no dedicated partner node. When an entire node fails, VMs need to be restarted and data is read from the surviving instances on other nodes within the vSAN cluster instead. At the same time data re-replication of the associated replicas needs to occur in order to restore the desired NumberOfFailuresToTolerate.
Failure Domains: When using Failure Domains, one instance of the data is kept within the local Failure Domain and another instance of the data is kept within another Failure Domain. By applying Failure Domains, rack failure protection can be achieved as well as site failure protection in stretched configuration.
vSAN provides increased support for locator LEDs on vSAN disks. Gen-9 HPE controllers in pass-through mode support vSAN activation of locator LEDs. Blinking LEDs help to identify and isolate specific drives.
vSAN 6.7 introduced the Host Pinning storage policy that can be used for next-generation, shared-nothing applications. When using Host Pinning, vSAN maintains a single copy of the data and stores the data blocks local to the ESXi host running the VM. This policy is offered as a deployment choice for Big Data (Hadoop, Spark), NoSQL, and other such applications that maintain data redundancy at the application layer. vSAN Host Pinning has specific requirements and guidelines that require VMware validation to ensure proper deployment.
|
|
Node Failure Protection
Details
|
2-way and 3-way Mirroring (RAID-1)
DataCore SANsymphony software primarily uses mirroring techniques (RAID-1) to protect data within the cluster. This effectively means the SANsymphony storage platform can withstand a failure of any two disks or any two nodes within the storage cluster. Optionally, hardware RAID can be implemented to enhance the robustness of individual nodes.
SANsymphony supports Dynamic Data Resilience. Data redundancy (none, 2-way or 3-way) can be added or removed on-the-fly at the vdisk level.
A 2-way mirror acts as active-active, where both copies are accessible to the host and written to. Updating of the mirror is synchronous and bi-directional.
A 3-way mirror acts as active-active-backup, where the active copies are accessible to the host and written to, and the backup copy is inaccessible to the host (paths not presented) and written to. Updating of the mirrors active copies is synchronous and bi-directional. Updating of the mirrors backup copy is synchronous and unidirectional (receive only).
In a 3-way mirror the backup copy should be independent of existing storage resources that are used for the active copies. Because of the synchronous updating all mirror copies should be equal in storage performance.
When in a 3-way mirror an active copy fails, the backup copy is promoted to active state. When the failed mirror copy is repaired, it automatically assumes a backup state. Roles can be changed manually on-the-fly by the end-user.
DataCore SANsymphony 10.0 PSP9 U1 introduced System Managed Mirroring (SMM). A multi-copy virtual disk is created from a storage source (disk pool or pass-through disk) from two or three DataCore Servers in the same server group. Data is synchronously mirrored between the servers to maintain redundancy and high availability of the data. System Managed Mirroring (SMM) addresses the complexity of managing multiple mirror paths for numerous virtual disks. This feature also addresses the 256 LUN limitation by allowing thousands of LUNs to be handled per network adapter. The software transports data in a round robin mode through available mirror ports to maximize throughput and can dynamically reroute mirror traffic in the event of lost ports or lost connections. Mirror paths are automatically and silently managed by the software.
The System Managed Mirroring (SMM) feature is disabled by default. This feature may be enabled or disabled for the server group.
With SANsymphony 10.0 PSP10 adds seamless transition when converting Mirrored Virtual Disks (MVD) to System Managed Mirroring (SMM). Seamless transition converts and replaces mirror paths on virtual disks in a manner in which there are no momentary breaks in mirror paths.
|
2-way Mirroring (Network RAID-10)
Within a Scale Computing HC cluster all data is written twice to the block storage pool for redundancy (2N). It is equivalent to Network RAID-10, as the two data chunks are placed on separate physical disks of separate physical nodes within the cluster. This protects against 1 disk failure and 1 node failure at the same time, and aggregates the I/O and throughput capabilities of all the individual disks in the cluster (= wide striping).
Once an RSD fails, the system re-mirrors the data using the free space in the HC3 cluster as a hot spare. Because all physical disks contain data, rebuilds are very fast. Scale Computing HC3 is often to detect the deteriorated state of a physical storage device in advance and pro-actively copy data to other devices ahead of an actual failure.
Currently only 1 Replica (2N) can be maintained, as the setting is not configurable for end-users.
|
Hybrid/All-Flash: 0-3 Replicas (RAID1; 1N-4N), Host Pinning (1N)
All-Flash: Erasure Coding (RAID5-6)
VMwares implementation of Erasure Coding only applies to All-Flash configurations and is similar to RAID-5 and RAID-6 protection. RAID-5 requires a minimum of 4 nodes (3+1) and protects against a single node failure; RAID-6 requires a minimum of 6 nodes and protects against two node failures. Erasure Coding is only available in vSAN Enterprise and Advanced editions, and is only configurable for All-flash configurations.
VMwares implementation of replicas is called NumberOfFailuresToTolerate (0, 1, 2 or 3). It applies to both disk and node failures. Optionally, nodes can be assigned to a logical grouping called Failure Domains. The use of 0 Replicas within a single site is only available when using Stretched Clustering, which is only available in the Enterprise editions.
Replicas: Before any write is acknowledged to the host, it is synchronously replicated on an adjacent node. All nodes in the cluster participate in replication. This means that with 2N one instance of data that is written is stored on one node and another instance of that data is stored on a different node in the cluster. For both instances this happens in a fully distributed manner, in other words, there is no dedicated partner node. When an entire node fails, VMs need to be restarted and data is read from the surviving instances on other nodes within the vSAN cluster instead. At the same time data re-replication of the associated replicas needs to occur in order to restore the desired NumberOfFailuresToTolerate.
Failure Domains: When using Failure Domains, one instance of the data is kept within the local Failure Domain and another instance of the data is kept within another Failure Domain. By applying Failure Domains, rack failure protection can be achieved as well as site failure protection in stretched configuration.
vSAN provides increased support for locator LEDs on vSAN disks. Gen-9 HPE controllers in pass-through mode support vSAN activation of locator LEDs. Blinking LEDs help to identify and isolate specific drives.
vSAN 6.7 introduced the Host Pinning storage policy that can be used for next-generation, shared-nothing applications. When using Host Pinning, vSAN maintains a single copy of the data and stores the data blocks local to the ESXi host running the VM. This policy is offered as a deployment choice for Big Data (Hadoop, Spark), NoSQL, and other such applications that maintain data redundancy at the application layer. vSAN Host Pinning has specific requirements and guidelines that require VMware validation to ensure proper deployment.
|
|
Block Failure Protection
Details
|
Not relevant (usually 1-node appliances)
Manual configuration (optional)
Manual designation per Virtual Disk is required to accomplish this. The end-user is able to define which node is paired to which node for that particular Virtual Disk. However, block failure protection is in most cases irrelevant as 1-node appliances are used as building blocks.
SANsymphony works on an N+1 redundancy design allowing any node to acquire any other node as a redundancy peer per virtual device. Peers are replacable/interchangable on a per Virtual Disk level.
|
Not relevant (1U/2U appliances)
|
Failure Domains
Block failure protection can be achieved by assigning nodes in the same appliance to different Failure Domains.
Failure Domains: When using Failure Domains, one instance of the data is kept within the local Failure Domain and another instance of the data is kept within another Failure Domain. By applying Failure Domains, rack failure protection can be achieved as well as site failure protection in stretched configurations.
|
|
Rack Failure Protection
Details
|
Manual configuration
Manual designation per Virtual Disk is required to accomplish this. The end-user is able to define which node is paired to which node for that particular Virtual Disk.
|
N/A
|
Failure Domains
Rack failure protection can be achieved by assigning nodes within the same rack to different Failure Domains.
Failure Domains: When using Failure Domains, one instance of the data is kept within the local Failure Domain and another instance of the data is kept within another Failure Domain. By applying Failure Domains, rack failure protection can be achieved as well as site failure protection in stretched configurations.
|
|
Protection Capacity Overhead
Details
|
Mirroring (2N) (primary): 100%
Mirroring (3N) (primary): 200%
+ Hardware RAID5/6 overhead (optional)
|
Mirroring (2N) (primary): 100%
|
Host Pinning (1N): Dependent on # of VMs
Replicas (2N): 100%
Replicas (3N): 200%
Erasure Coding (RAID5): 33%
Erasure Coding (RAID6): 50%
RAID5: The stripe size used by vSAN for RAID5 is 3+1 (33% capacity overhead for data protection) and is independent of the cluster size. The minimum cluster size for RAID5 is 4 nodes.
RAID6: The stripe size used by vSAN for RAID6 is 4+2 (50% capacity overhead for data protection) and is independent of the cluster size. The minimum cluster size for RAID6 is 6 nodes.
RAID5/6 can only be leveraged in vSAN All-flash configurations because of I/O amplification.
|
|
Data Corruption Detection
Details
|
N/A (hardware dependent)
SANsymphony fully relies on the hardware layer to protect data integrity. This means that the SANsymphony software itself does not perform Read integrity checks and/or Disk scrubbing to verify and maintain data integrity.
|
Read integrity checks (software)
Disk scrubbing (software)
The HC3 system performs continuous read integrity checks on data blocks to detect corruption errors. As blocks are written to disk, replica blocks are written to other disks within the storage pool for redundancy. Disk are continuously scrubbed in the background for errors and any corruption found is repaired from the replica data blocks.
|
Read integrity checks
Disk scrubbing (software)
End-to-end checksum provides automatic detection and resolution of silent disk errors. Creation of checksums is enabled by default, but can be disabled through policy on a per VM (or virtual disk) basis if desired. In case of checksum verification failures data is fetched from another copy.
The disk scrubbing process runs in the background.
|
|
|
|
Points-in-Time |
|
|
|
Built-in (native)
|
Built-in (native)
HyperCore snapshots use a space efficient allocate-on-write methodology where no additional storage is used at the time the snapshot is taken, but as blocks are changed the original content blocks are preserved, and new content written to freshly allocated space on the cluster.
|
Built-in (native)
VMware vSAN uses the 'vSANSparse' snapshot format that leverages VirstoFS technology as well as in-memory metadata cache for lookups. vSANSparse offers greatly improved performance when compared to previous virtual machine snapshot implementations.
|
|
|
Local + Remote
SANsymphony snapshots are always created on one side only. However, SANsymphony allows you to create a snapshot for the data on each side by configuring two snapshot schedules, one for the local volume and one for the remote volume. Both snapshot entities are independent and can be deleted independently allowing different retention times if needed.
There is also the capability to pair the snapshot feature along with asynchronous replication which provides you with the ability to have a third site long distance remote copy in place with its own retention time.
|
Local (+ Remote)
Manual snapshots are always created on the source HC3 cluster only and are never deleted by the system.
Without remote replication active on a VM, snapshots created using snapshot schedules are also created on the source HC3 cluster only.
With remote replication active, a snapshot schedule repeatedly creates a VM snapshot on the source cluster and then copies that snapshot to the target cluster, where it is retained for a specified number of minutes/hours/days/weeks/months. The default remote replication frequency of 5 minutes, combined with the default retention of 25 minutes, means that by default 5 snapshots are maintained on the target HC3 cluster at any given time.
A VM can only have one snapshot schedule assigned at a time. However, a schedule can contain multiple recurrence rules. Each recurrence rule consists of a replication snapshot frequency (x minutes/hours/days/weeks/months), an execution time (eg. 12:00AM), and a retention (y minutes/hours/days/weeks).
|
Local
|
|
Snapshot Frequency
Details
|
1 Minute
The snapshot lifecycle can be automatically configured using the integrated Automation Scheduler.
|
5 minutes
A snapshot schedule allows a minimum frequency of 5 minutes. However, ScaleCare Support recommends no less than every 15 minutes as a general best practice.
|
GUI: 1 hour
vSAN snapshots are invoked using the existing snapshot options in the VMware vSphere GUI.
To create a snapshot schedule using the vCenter (Web) Client: Click on a VM, then inside the Monitoring tab select Tasks & Events, Scheduled Tasks, 'Take Snapshots…'.
A single snapshot schedule allows a minimum frequency of 1 hour. Manual snapshots can be taken at any time.
|
|
Snapshot Granularity
Details
|
Per VM (Vvols) or Volume
With SANsymphony the rough hierarchy is: physical disk(s) or LUNs -> Disk Pool -> Virtual Disk (=logical volume).
Although DataCore SANsymphony uses block-storage, the platform is capable of attaining per VM-granularity if desired.
In Microsoft Hyper-V environments, when a VM with vdisks is created through SCVMM, DataCore can be instructed to automatically carve out a Virtual Disk (=storage volume) for every individual vdisk. This way there is a 1-to-1 alignment from end-to-end and snapshots can be created on the VM-level. The per-VM functionality is realized by installing the DataCore Storage Management Provider in SCVMM.
Because of the per-host storage limitations in VMware vSphere environments, VVols is leveraged to provide per VM-granularity. DataCore SANsymphony Provider v2.01 is certified for VMware ESXi 6.5 U2/U3, ESXi 6.7 GA/U1/U2/U3 and ESXi 7.0 GA/U1.
|
Per VM
|
Per VM
|
|
|
Built-in (native)
DataCore SANsymphony incorporates Continuous Data Protection (CDP) and leverages this as an advanced backup mechanism. As the term implies, CDP continuously logs and timestamps I/Os to designated virtual disks, allowing end-users to restore the environment to an arbitrary point-in-time within that log.
Similar to snapshot requests, one can generate a CDP Rollback Marker by scripting a call to a PowerShell cmdlet when an application has been quiesced and the caches have been flushed to storage. Several of these markers may be present throughout the 14-day rolling log. When rolling back a virtual disk image, one simply selects an application-consistent or crash-consistent restore point from just before the incident occurred.
|
Built-in (native)
By combining Scale Computing HC3s native snapshot feature with its native remote replication mechanism, backup copies can be created on remote HC3 clusters.
A snapshot is not a backup:
1. For a data copy to be considered a backup, it must at the very least reside on a different physical platform (=controller+disks) to avoid dependencies. If the source fails or gets corrupted, a backup copy should still be accessible for recovery purposes.
2. To avoid further dependencies, a backup copy should reside in a different physical datacenter - away from the source. If the primary datacenter becomes unavailable for whatever reason, a backup copy should still be accessible for recovery purposes.
When considering the above prerequisites, a backup copy can be created by combining snapshot functionality with remote replication functionality to create independent point-in-time data copies on other SDS/HCI clusters or within the public cloud. In ideal situations, the retention policies can be set independently for local and remote point-in-time data copies, so an organization can differentiate between how long the separate backup copies need to be retained.
Apart from the native features, Scale Computing HC3 supports any in-guest 3rd party backup agents that are designed to run on Intel-based virtual machines on our supported OS platforms.
|
External (vSAN Certified)
VMware vSAN does not provide any backup/restore capabilities of its own. Therefore it relies on existing data protection solutions like Dell EMC Avamar Virtual Edition (AVE) backup software or any other vSphere compatible 3rd party backup application. AVE is not part of the licenses bundled with VxRail and thus needs to be purchased separately. AVE requires the deployment of virtual backup appliances on top of vSphere.
No specific integration exists between VMware vSAN and Dell EMC AVE.
VMwares free-of-charge backup software that comes with any vSphere license, VMware vSphere Data Protection (VDP), has been declared End-of-Availability and is not supported for VMware vSphere 6.7 and up.
VMware is working on native vSAN data protection, which is currently still in beta and expected to go live in the first half of 2019.
The following 3rd party Data Protection partner products are certified with vSAN 6.7:
- Cohesity DataProtect 6.1
- CommVault 11
- Dell EMC Avamar 18.1
- Dell EMC NetWorker 18.1
- Hitachi Data Instance Director 6.7
- Rubrik Cloud Data Management 4.2
- Veeam Backup&Replication 9.5 U4a
- Veritas NetBackup 8.1.2
|
|
|
Local or Remote
All available storage within the SANsymphony group can be configured as targets for back-up jobs.
|
Locally
To remote sites
|
N/A
VMware vSAN does not provide any backup/restore capabilities of its own. Therefore it relies on existing data protection solutions like Dell EMC Avamar Virtual Edition (AVE) backup software or any other vSphere compatible 3rd party backup application. AVE is not part of the licenses bundled with VxRail and thus needs to be purchased separately. AVE requires the deployment of virtual backup appliances on top of vSphere.
No specific integration exists between VMware vSAN and Dell EMC AVE.
VMwares free-of-charge backup software that comes with any vSphere license, VMware vSphere Data Protection (VDP), has been declared End-of-Availability and is not supported for VMware vSphere 6.7 and up.
VMware is working on native vSAN data protection, which is currently still in beta and expected to go live in the first half of 2019.
The following 3rd party Data Protection partner products are certified with vSAN 6.7:
- Cohesity DataProtect 6.1
- CommVault 11
- Dell EMC Avamar 18.1
- Dell EMC NetWorker 18.1
- Hitachi Data Instance Director 6.7
- Rubrik Cloud Data Management 4.2
- Veeam Backup&Replication 9.5 U4a
- Veritas NetBackup 8.1.2
|
|
|
Continuously
As Continuous Data Protection (CDP) is being leveraged, I/Os are logged and timestamped in a continous fashion, so end-users can restore to virtually any-point-in-time.
|
5 minutes (Asynchronous)
VM snapshots are created automatically by the replication process as quickly as every 5 minutes (as long as the previous snapshot’s change blocks have been fully replicated to the target HC3 cluster). The remote replication default schedule will take a snapshot every 5 minutes and keep snapshots for 25 minutes.
|
N/A
VMware vSAN does not provide any backup/restore capabilities of its own. Therefore it relies on existing data protection solutions like Dell EMC Avamar Virtual Edition (AVE) backup software or any other vSphere compatible 3rd party backup application. AVE is not part of the licenses bundled with VxRail and thus needs to be purchased separately. AVE requires the deployment of virtual backup appliances on top of vSphere.
No specific integration exists between VMware vSAN and Dell EMC AVE.
VMwares free-of-charge backup software that comes with any vSphere license, VMware vSphere Data Protection (VDP), has been declared End-of-Availability and is not supported for VMware vSphere 6.7 and up.
VMware is working on native vSAN data protection, which is currently still in beta and expected to go live in the first half of 2019.
The following 3rd party Data Protection partner products are certified with vSAN 6.7:
- Cohesity DataProtect 6.1
- CommVault 11
- Dell EMC Avamar 18.1
- Dell EMC NetWorker 18.1
- Hitachi Data Instance Director 6.7
- Rubrik Cloud Data Management 4.2
- Veeam Backup&Replication 9.5 U4a
- Veritas NetBackup 8.1.2
|
|
Backup Consistency
Details
|
Crash Consistent
File System Consistent (Windows)
Application Consistent (MS Apps on Windows)
By default CDP creates crash consistent restore points. Similar to snapshot requests, one can generate a CDP Rollback Marker by scripting a call to a PowerShell cmdlet when an application has been quiesced and the caches have been flushed to storage.
Several CDP Rollback Markers may be present throughout the 14-day rolling log. When rolling back a virtual disk image, one simply selects an application-consistent, filesystem-consistent or crash-consistent restore point from (just) before the incident occurred.
In a VMware vSphere environment, the DataCore VMware vCenter plug-in can be used to create snapshot schedules for datastores and select the VMs that you want to enable VSS filesystem/application consistency for.
|
Crash Consistent
File System Consistent (Windows)
Application Consistent (MS Apps on Windows)
For Windows VMs that require it, VSS snapshot integration is provided in the VIRTIO driver package.
|
N/A
VMware vSAN does not provide any backup/restore capabilities of its own. Therefore it relies on existing data protection solutions like Dell EMC Avamar Virtual Edition (AVE) backup software or any other vSphere compatible 3rd party backup application. AVE is not part of the licenses bundled with VxRail and thus needs to be purchased separately. AVE requires the deployment of virtual backup appliances on top of vSphere.
No specific integration exists between VMware vSAN and Dell EMC AVE.
VMwares free-of-charge backup software that comes with any vSphere license, VMware vSphere Data Protection (VDP), has been declared End-of-Availability and is not supported for VMware vSphere 6.7 and up.
VMware is working on native vSAN data protection, which is currently still in beta and expected to go live in the first half of 2019.
The following 3rd party Data Protection partner products are certified with vSAN 6.7:
- Cohesity DataProtect 6.1
- CommVault 11
- Dell EMC Avamar 18.1
- Dell EMC NetWorker 18.1
- Hitachi Data Instance Director 6.7
- Rubrik Cloud Data Management 4.2
- Veeam Backup&Replication 9.5 U4a
- Veritas NetBackup 8.1.2
|
|
Restore Granularity
Details
|
Entire VM or Volume
With SANsymphony the rough hierarchy is: physical disk(s) or LUNs -> Disk Pool -> Virtual Disk (=logical volume).
Although DataCore SANsymphony uses block-storage, the platform is capable of attaining per VM-granularity if desired.
In Microsoft Hyper-V environments, when a VM with vdisks is created through SCVMM, DataCore can be instructed to automatically carve out a Virtual Disk (=storage volume) for every individual vdisk. This way there is a 1-to-1 alignment from end-to-end and snapshots can be created on the VM-level. The per-VM functionality is realized by installing the DataCore Storage Management Provider in SCVMM.
Because of the per-host storage limitations in VMware vSphere environments, VVols is leveraged to provide per VM-granularity. DataCore SANsymphony Provider v2.01 is VMware certified for ESXi 6.5 U2/U3, ESXi 6.7 GA/U1/U2/U3 and ESXi 7.0 GA/U1.
When configuring the virtual environment as described above, effectively VM-restores are possible.
For file-level restores a Virtual Disk snapshot needs to be mounted so the file can be read from the mount. Many simultaneous rollback points for the same Virtual Disk can coexist at the same time, allowing end-users to compare data states. Mounting and changing rollback points does not alter the original Virtual Disk.
|
Entire VM
Although Scale Computing HC3 uses block-storage, the platform is capable of attaining per VM-granularity.
|
N/A
VMware vSAN does not provide any backup/restore capabilities of its own. Therefore it relies on existing data protection solutions like Dell EMC Avamar Virtual Edition (AVE) backup software or any other vSphere compatible 3rd party backup application. AVE is not part of the licenses bundled with VxRail and thus needs to be purchased separately. AVE requires the deployment of virtual backup appliances on top of vSphere.
No specific integration exists between VMware vSAN and Dell EMC AVE.
VMwares free-of-charge backup software that comes with any vSphere license, VMware vSphere Data Protection (VDP), has been declared End-of-Availability and is not supported for VMware vSphere 6.7 and up.
VMware is working on native vSAN data protection, which is currently still in beta and expected to go live in the first half of 2019.
The following 3rd party Data Protection partner products are certified with vSAN 6.7:
- Cohesity DataProtect 6.1
- CommVault 11
- Dell EMC Avamar 18.1
- Dell EMC NetWorker 18.1
- Hitachi Data Instance Director 6.7
- Rubrik Cloud Data Management 4.2
- Veeam Backup&Replication 9.5 U4a
- Veritas NetBackup 8.1.2
|
|
Restore Ease-of-use
Details
|
Entire VM or Volume: GUI
Single File: Multi-step
Restoring VMs or single files from volume-based storage snapshots requires a multi-step approach.
For file-level restores a Virtual Disk snapshot needs to be mounted so the file can be read from the mount. Many simultaneous rollback points for the same Virtual Disk can coexist at the same time, allowing end-users to compare data states. Mounting and changing rollback points does not alter the original Virtual Disk.
|
Entire VM: Multi-step
Single File: Multi-step
Restoring VMs or single files from HC3 storage snapshots requires a multi-step approach.
For file-level restores a VM snapshot needs to be cloned and mounted so the file can be read from the mount. Cloning and mounting does not alter the original VM snapshot.
|
N/A
VMware vSAN does not provide any backup/restore capabilities of its own. Therefore it relies on existing data protection solutions like Dell EMC Avamar Virtual Edition (AVE) backup software or any other vSphere compatible 3rd party backup application. AVE is not part of the licenses bundled with VxRail and thus needs to be purchased separately. AVE requires the deployment of virtual backup appliances on top of vSphere.
No specific integration exists between VMware vSAN and Dell EMC AVE.
VMwares free-of-charge backup software that comes with any vSphere license, VMware vSphere Data Protection (VDP), has been declared End-of-Availability and is not supported for VMware vSphere 6.7 and up.
VMware is working on native vSAN data protection, which is currently still in beta and expected to go live in the first half of 2019.
The following 3rd party Data Protection partner products are certified with vSAN 6.7:
- Cohesity DataProtect 6.1
- CommVault 11
- Dell EMC Avamar 18.1
- Dell EMC NetWorker 18.1
- Hitachi Data Instance Director 6.7
- Rubrik Cloud Data Management 4.2
- Veeam Backup&Replication 9.5 U4a
- Veritas NetBackup 8.1.2
|
|
|
|
Disaster Recovery |
|
|
Remote Replication Type
Details
|
Built-in (native)
DataCore SANsymphonys remote replication function, Asynchronous Replication, is called upon when secondary copies will be housed beyond the reach of Synchronous Mirroring, as in distant Disaster Recovery (DR) sites. It relies on a basic IP connection between locations and works in both directions. That is, each site can act as the disaster recovery facility for the other. The software operates near-synchronously, meaning that it does not hold up the application waiting on confirmation from the remote end that the update has been stored remotely.
|
Built-in (native)
All HC3 source and target clusters that will be participating in remote replication must run the same HCOS version. It is possible to replicate between a tiered and non-tiered HC3 cluster.
HC3 remote replication uses network compression by default.
|
Built-in (Stretched Clusters only)
External
VMware vSAN does not have any remote replication capabilities of its own. Stretched Clustering with synchronous replication is the exception.
Therefore in non-stretched setups it relies on external remote replication mechanisms like VMwares free-of-charge vSphere Replication (VR) or any vSphere compatible 3rd party remote replication application (eg. Zerto VR).
vSphere Replication requires the deployment of virtual appliances. No specific integration exists between VMware vSAN and VMware vSphere VR.
As of vSAN 7.0 vSphere Replication objects are visible in the vSAN capacity view. Objects are recognized as vSphere replica type, and space usage is accounted for under the Replication category.
|
|
Remote Replication Scope
Details
|
To remote sites
To MS Azure Cloud
On-premises deployments of DataCore SANsymphony can use Microsoft Azure cloud as an added replication location to safeguard highly available systems. For example, on-premises stretched clusters can replicate a third copy of the data to MS Azure to protect against data loss in the event of a major regional disaster. Critical data is continuously replicated asynchronously within the hybrid cloud configuration.
To allow quick and easy deployment a ready-to-go DataCore Cloud Replication instance can be acquired through the Azure Marketplace.
MS Azure can serve only as a data repository. This means that VMs cannot be restored and run in an Azure environment in case of a disaster recovery scenario.
|
To remote sites
To Google Cloud Platform (GCP)
Network latency between the source and HC3 target clusters should be below 2,000ms (2 seconds).
Scale Computing HC3 Cloud Unity DRaaS: This disaster recovery as a service offering provides an HC3 DR target running securely in Google Cloud Platform (GCP). Workloads can be replicated to the Google cloud for failover or recovery on a per VM basis. HC3 Cloud Unity DRaaS uses L2 networking to provide seamless connectivity between on-prem and remote hosted VMs in the event of failover. HC3 Cloud Unity DRaaS includes ScaleCare support at every stage to assist in setup, testing, failover, and recovery. The service also comes with a runbook to assist with both planning and execution. When needed, all protected VMs can be failed over and running in the cloud and then failed back once the on-prem resources are restored. The Recovery Point Objective (RPO) is 4 hours for recovery of the first VM on GCP.
HC3 Cloud Unity DRaaS requires a monthly subscription that is in part based on GCP resource usage (compute, storage, network).
|
VR: To remote sites, To VMware clouds
vSAN allows for replication of VMs to a different vSAN cluster on a remote site or to any supported VMware Cloud Service Provider (vSphere Replication to Cloud). This includes VMware on AWS and VMware on IBM Cloud.
|
|
Remote Replication Cloud Function
Details
|
Data repository
All public clouds can only serve as data repository when hosting a DataCore instance. This means that VMs cannot be restored and run in the public cloud environment in case of a disaster recovery scenario.
In the Microsoft Azure Marketplace there is a pre-installed DataCore instance (BYOL) available named DataCore Cloude Replication.
BYOL = Bring Your Own License
|
DR-site (GCP)
All protected VMs can be failed over and running in the cloud and then failed back once the on-prem resources are restored.
Scale Computing HC3 Cloud Unity DRaaS leverages Google Cloud Platform (GCP) as a DR-site. All traffic between the on-premises HC3 environment and GCP utilizes an encrypted connection, authenticated via pre-shared key. Only changed blocks are transmitted. Replicated data remains solely in the zone chosen to run the HC3 Cloud instance in.
Current HC3 Cloud Unity/Google Datacenter Locations:
- United States: Iowa, South Carolina, Oregon
- Canada: Montreal
- Europe: Belgium, London, Frankfurt
|
VR: DR-site (VMware Clouds)
Because VMware on AWS and VMware on IBM Cloud are full vSphere implementations, replicated VMs can be started and run in a DR-scenario.
|
|
Remote Replication Topologies
Details
|
Single-site and multi-site
Single Site DR = 1-to-1
Multiple Site DR = 1-to many, many-to 1
|
Single-site and multi-site
Single Site DR = 1-to-1
Multiple Site DR = 1-to many, many-to 1
Scale Computing HC3 supports 1-to-1 replication as well as many-to-1 replication. 1-to-1 replication includes support for cross-replication between two systems, meaning source-to-target and target-to-source. 1-to-many replication means that different VMs from one system can be replicated to different remote systems; with HC3 the same VM cannot be replicated to different remote systems. Many-to-1 means that multiple source systems can replicate VMs to the same target system. A maximum of 25 HC3 source systems can replicate to a single HC3 target system.
|
VR: Single-site and multi-site
Single Site DR = 1-to-1
Multiple Site DR = 1-to many, many-to 1
|
|
Remote Replication Frequency
Details
|
Continuous (near-synchronous)
SANsymphony Asynchronous Replication is not checkpoint-based but instead replicates continuously. This way data loss is kept to a minimum (seconds to minutes). End-users can inject custom consistency checkpoints based on CDP technology which has no minimum time slot/frequency.
|
5 minutes
VM snapshots are created automatically by the replication process as quickly as every 5 minutes (as long as the previous snapshot’s change blocks have been fully replicated to the target HC3 cluster). The remote replication default schedule will take a snapshot every 5 minutes and keep snapshots for 25 minutes.
ScaleCare Support recommends a snapshot frequency of 15 minutes as a general best practice.
|
VR: 5 minutes (Asynchronous)
vSAN: Continuous (Stretched Cluster)
The 'Stretched Cluster' feature is only available in the Enterprise edition.
|
|
Remote Replication Granularity
Details
|
VM or Volume
With SANsymphony the rough hierarchy is: physical disk(s) or LUNs -> Disk Pool -> Virtual Disk (=logical volume).
Although DataCore SANsymphony uses block-storage, the platform is capable of attaining per VM-granularity if desired.
In Microsoft Hyper-V environments, when a VM with vdisks is created through SCVMM, DataCore can be instructed to automatically carve out a Virtual Disk (=storage volume) for every individual vdisk. This way there is a 1-to-1 alignment from end-to-end and snapshots can be created on the VM-level. The per-VM functionality is realized by installing the DataCore Storage Management Provider in SCVMM.
Because of the per-host storage limitations in VMware vSphere environments, VVols is leveraged to provide per VM-granularity. DataCore SANsymphony Provider v2.01 is VMware certified for ESXi 6.5 U2/U3, ESXi 6.7 GA/U1/U2/U3 and ESXi 7.0 GA/U1.
|
VM
Excluding virtual disks from VM is a feature that is still in testing and must currently be done by engaging Support and discussing the options and considerations required.
|
VR: VM
|
|
Consistency Groups
Details
|
Yes
SANsymphony provides the option to use Virtual Disk Grouping to enable end-users to restore multiple Virtual Disks to the exact same point-in-time.
With SANsymphony the rough hierarchy is: physical disk(s) or LUNs -> Disk Pool -> Virtual Disk (=logical volume).
|
No
|
VR: No
Protection is on a per-VM basis only.
|
|
|
VMware SRM (certified)
DataCore provides a certified Storage Replication Adapter (SRA) for VMware Site Recovery Manager (SRM). DataCore SRA 2.0 (SANsymphony 10.0 FC/iSCSI) shows official support for SRM 6.5 only. It does not support SRM 8.2 or 8.1.
There is no integration with Microsoft Azure Site Recovery (ASR). However, SANsymphony can be used with the control and automation options provided by Microsoft System Center (e.g. Operations Manager combined with Virtual Machine Manager and Orchestrator) to build a DR orchestration solution.
|
HC3 Cloud Unity (native)
HC3 Cloud Unity DRaaS is a complete cloud service that provides a Disaster Recovery (DR) runbook outlining DR procedures.
DR testing involves cloning a replicated VM snapshot on a remote cluster and booting the clone.
Cloud Unity DRaaS is available in the following Google Regions:
United States: Iowa, South Carolina, Oregon
Canada: Montreal
Europe: Brussels, London, Frankfurt
HyperCore 8.5.1 introduced a bulk action allowing the cloning of Replication Target VMs.
|
VMware SRM (certified)
VMware Interoperability Matrix shows official support for SRM 8.3.
|
|
Stretched Cluster (SC)
Details
|
VMware vSphere: Yes (certified)
DataCore SANsymphony is certified by VMware as a VMware Metro Storage Cluster (vMSC) solution. For more information, please view https://kb.vmware.com/kb/2149740.
|
N/A
At this time Scale Computing does not support HC3 clusters that are stretched across data centers.
|
VMware vSphere: Yes (certified)
There is read-locality in place preventing sub-optimal cross-site data transfers.
vSAN 7.0 introduces redirection for all VM I/O from a capacity-strained site to the other site, untill the capacity is freed up. This feature improves the uptime of VMs.
The Stretched Cluster feature is only available in the Enterprise edition of vSAN.
|
|
|
2+sites = two or more active sites, 0/1 or more tie-breakers
Theoretically up to 64 sites are supported.
SANsymphony does not require a quorum or tie-breaker in stretched cluster configurations, but can be used as an optional component. The Virtual Disk Witness can provide a tie-breaker role if for instance redundant inter site paths are not implemented. The tie-breaker node (server or device) must be other than the two nodes presenting a virtual disk. Access to the Virtual Disk Witness is leading for storage node behavior.
There are 3 ways to configure the stretched cluster without any tie-breakers:
1. Default: in a split-brain scenario both sides stay active allowing upper infrastructure layers (OS/database/application) to make a decision (eg. clustering principles). In any case SANsymphony prevents a merge when there is a risk to data integrity, and the end-user has to make the choice on how to proceed next (which side is true)
2. Select one side to go inaccessible
3. Select both sides to go inaccessible.
|
N/A
At this time Scale Computing does not support HC3 clusters that are stretched across data centers.
|
3-sites: two active sites + tie-breaker in 3rd site
NEW
The use of the Stretched Cluster Witness Appliance automates failover decisions in order to avoid split-brain scenarios like network partitions and remote site failures. The witness is deployed as a VM within a third site.
vSAN 6.7 introduced the option to configure a dedicated VMkernel NIC for witness traffic. This enhances data security because witness traffic is isolated from vSAN data traffic.
vSAN 7.0 U1 introduces the vSAN Shared Witness. This feature allows end-user organizations to leverage a single Witness Appliance for up to 64 stretched clusters. This is especially useful in scenarios where many edge locations are involved. The size of the Witness Appliance determines the maximum number of cluster and components that can be managed.
|
|
|
<=5ms RTT (targeted, not required)
RTT = Round Trip Time
In truth the user/app with the least tolerated write latency defines the acceptable RTT or distance. In practice
|
N/A
At this time Scale Computing does not support HC3 clusters that are stretched across data centers.
|
<=5ms RTT
|
|
|
<=32 hosts at each active site (per cluster)
The maximum is per cluster. The SANsymphony solution can consist of multiple stretched clusters with a maximum of 64 nodes each.
|
N/A
At this time Scale Computing does not support HC3 clusters that are stretched across data centers.
|
<=15 hosts at each active site
|
|
SC Data Redundancy
Details
|
Replicas: 1N-2N at each active site
DataCore SANsymphony provides enhanced stretched cluster availability by offering local fault protection with In Pool Mirroring. With In Pool Mirroring you can choose to mirror the data inside the local Disk Pool as well as mirror the data across sites to a remote Disk Pool. In the remote Disk Pool data is then also mirrored. All mirroring happens synchronously.
1N-2N: With SANsymphony Stretched Clustering, there can be either 1 instance of the data at each site (no In Pool Mirroring) or 2 instances of the data a each site (In Pool RAID-1 Mirroring).
|
N/A
At this time Scale Computing does not support HC3 clusters that are stretched across data centers.
|
Replicas: 0-3 Replicas (1N-4N) at each active site
Erasure Coding: RAID5-6 at each active site
VMware vSAN 6.6 introduced enhanced stretched cluster availability with Local Fault Protection. You can provide local fault protection for virtual machine objects within a single site in a stretched cluster. You can define a Primary level of failures to tolerate for the cluster, and a Secondary level of failures to tolerate for objects within a single site. When one site is unavailable, vSAN maintains availability with local redundancy in the available site.
In the case of stretched clustering, selecting 0 replicas means that there is only one instance of the data available at each of the active sites.
Local Fault Protection is only available in the Enterprise edition of vSAN.
|
|
|
Data Services
|
|
|
|
|
|
|
Efficiency |
|
|
Dedup/Compr. Engine
Details
|
Software (integration)
NEW
SANsymphony provides integrated and individually selectable inline deduplication and compression. In addition, SANsymphony is able to leverage post-processing deduplication and compression options available in Windows 2016/2019 as an alternative approach.
|
Software
Scale Computing HC3 is able to leverage native background data deduplication to reduce the physical space occupied by virtual disks.
The storage details available in the HC3 Web interface provide information on efficiency gains resulting from deduplication.
|
All-Flash: Software
Hybrid: N/A
Deduplication and compression are only available in Enterprise and Advanced editions of vSAN.
Deduplication and compression are not available for vSAN hybrid configurations.
|
|
Dedup/Compr. Function
Details
|
Efficiency (space savings)
Deduplication and compression can provide two main advantages:
1. Efficiency (space savings)
2. Performance (speed)
Most of the time deduplication/compression is primarily focussed on efficiency.
|
Efficiency (space savings)
Deduplication and compression can provide two main advantages:
1. Efficiency (space savings)
2. Performance (speed)
Most of the time deduplication/compression is primarily focussed on efficiency.
|
Efficiency (Space savings)
Deduplication and compression can provide two main advantages:
1. Efficiency (space savings)
2. Performance (speed)
Most of the time deduplication/compression is primarily focussed on efficiency.
|
|
Dedup/Compr. Process
Details
|
Deduplication: Inline (post-ack)
Compression: Inline (post-ack)
Deduplication/Compression: Post-Processing (post process)
NEW
Deduplication can be performed in 4 ways:
1. Immediately when the write is processed (inline) and before the write is ackowledged back to the originator of the write (pre-ack).
2. Immediately when the write is processed (inline) and in parallel to the write being acknowledged back to the originator of the write (on-ack).
3. A short time after the write is processed (inline) so after the write is acknowleged back to the originator of the write - eg. when flushing the write buffer to persistent storage (post-ack)
4. After the write has been committed to the persistent storage layer (post-process).
The first and second methods, when properly integrated into the solution, are most likely to offer both performance and capacity benefits. The third and fourth methods are primarily used for capacity benefits only.
DataCore SANSymphony 10 PSP12 and above leverage both inline deduplication and compression, as well as post process deduplication and compression techniques.
With inline deduplication incoming writes first hit the memory cache of the primary host and are replicated to the cache of a secondary host in an un-deduplicated state. After the blocks have been written to both memory caches, the primary host acknowledges the writes back to the originator. Each host then destages the written blocks to the persistent storage layer. During destaging, written blocks are deduplicates and/or compressed.
Windows Server 2019 deduplication is performed outside of IO path (post-processing) and is multi-threaded to speed up processing and keep performance impact minimal.
|
Post-Processing
Deduplication can be performed in 4 ways:
1. Immediately when the write is processed (inline) and before the write is ackowledged back to the originator of the write (pre-ack).
2. Immediately when the write is processed (inline) and in parallel to the write being acknowledged back to the originator of the write (on-ack).
3. A short time after the write is processed (inline) so after the write is acknowleged back to the originator of the write - eg. when flushing the write buffer to persistent storage (post-ack)
4. After the write has been committed to the persistent storage layer (post-process).
The first and second methods, when properly integrated into the solution, are most likely to offer both performance and capacity benefits. The third and fourth methods are primarily used for capacity benefits only.
The Scale Computing HC3 data deduplication feature is considered a post-process implementation that works with existing background processes to identify duplicate 1 MiB blocks of data on a given physical disk. The process leverages the SCRIBE metadata reference count mechanism by finding independently written blocks that are the same. This duplicate review is for each physical disk on a given node to ensure as little a footprint as possible while providing all of the benefits of full deduplication.
The deduplication process is broken into two steps. The first step reviews VM data blocks by creating a hash index of each block and storing the hash in the nodes RAM. The hashing algorithm will be able to scan the system data for deduplication candidates at roughly 1 MiB/s of data on HDDs and 4 MiB/s of data on SSDs, both of these estimates per node. The second process occurs during low system utilization. The system will work through the queue of hashed blocks in RAM. It will search for matching hashes until the background disk scan regenerates them. When the process finds two blocks with a matching hash it will verify the underlying blocks are in fact duplicates before incrementing the reference count in metadata on the block it is planning to free. Updating the metadata count for the block essentially releases the space of the duplicate block. The block then returns to the system’s free storage pool. This secondary process can progress much faster than 1 MiB/s; the speed is dependent on the current system load.
The SCRIBE metadata reference count mechanism is the same architecture utilized by snapshots and clones in SCRIBE to allow quick, efficient, low-impact thin-provisioning on the HC3 system. Shared blocks are referenced and a count to the block stored in the metadata.
SCRIBE = Scale Computing Reliable Independent Block Engine
|
All-Flash: Inline (post-ack)
Hybrid: N/A
Deduplication can be performed in 4 ways:
1. Immediately when the write is processed (inline) and before the write is ackowledged back to the originator of the write (pre-ack).
2. Immediately when the write is processed (inline) and in parallel to the write being acknowledged back to the originator of the write (on-ack).
3. A short time after the write is processed (inline) so after the write is acknowleged back to the originator of the write - eg. when flushing the write buffer to persistent storage (post-ack)
4. After the write has been committed to the persistent storage layer (post-process).
The first and second methods, when properly integrated into the solution, are most likely to offer both performance and capacity benefits. The third and fourth methods are primarily used for capacity benefits only.
|
|
Dedup/Compr. Type
Details
|
Optional
NEW
By default, deduplication and compression are turned off. For both inline and post-process, deduplication and compression can be enabled.
For inline deduplication and compression the feature can be turned on per node. The entire node represents a global deduplication domain. Deduplication and compression work across pools and across vDisks. Individual pools can be selected to participate in capacity optimization. Either deduplication or compression or both can be selected per individual vDisk. Pools can host both capacity optimized and non-capacity optimized vDisks at the same time. The optional capacity optimization settings can be added/changed/removed during operation for each vDisk.
For post-processing the feature can be enabled per pool. All vDisks in that pool would be deduplicated and compressed. Each pool is an independent deduplication domain. This means only data in the pool is capacity optimized, but not across pools. Additionally, for post-processing capacity optimization can be scheduled so admins can decide when deduplication should run.
With SANsymphony the rough hierarchy is: physical disk(s) or LUNs -> Disk Pool -> Virtual Disk (=logical volume).
|
Always-on
By default Scale Computing HC3 data deduplication is turned on. The platform has been designed to prioritize running workloads over the deduplication tasks to prevent any negative performance impact. As such, the process piggybacks on pre-existing background structures - such as the background disk scrubber - for the hashing process.
|
All-Flash: Optional
Hybrid: N/A
NEW
Compression occurs after deduplication and just before the data is actually written to the persisent data layer.
In vSAN 7.0 U1 and onwards there are three settings to choose from: 'None', 'Compression Only' or 'Deduplication'.
When choosing 'Compression only' deduplication is effectively disabled. This optimizes storage performance, resource usage as well as availability. When using 'Compression only' a single disk failing no longer impacts the entire disk group.
|
|
Dedup/Compr. Scope
Details
|
Persistent data layer
|
Persistent data layer
|
Persistent data layer
Deduplication and compression are not used for optimizing read/write cache
|
|
Dedup/Compr. Radius
Details
|
Pool (post-processing deduplication domain)
Node (inline deduplication domain)
NEW
With SANsymphony the rough hierarchy is: physical disk(s) or LUNs -> Disk Pool -> Virtual Disk (=logical volume).
For inline deduplication and compression raw physical disks are added to a capacity optimization pool. The entire node represents a global deduplication domain. Deduplication and compression work across pools and across vDisks. Individual pools can be selected to participate in capacity optimization.
The post-processing capability provided through Windows Server 2016/2019 is highly scalable and can be used with volumes up to 64 TB and files up to 1 TB in size. Data deduplication identifies repeated patterns across files on that volume.
|
Per Node
Scale Computing HC3 data deduplication works on a per node basis. All blocks that are directly written or replicated from another node are deduplicated by the indiviual node independent from other nodes within the same cluster. This way data integrity is ensured for every single node.
|
Disk Group
Deduplication and compression is a cluster-wide setting and is performed within each disk group. Redundant copies of a block within the same disk group are reduced to one copy. However, redundant blocks across multiple disk groups are not deduplicated.
|
|
Dedup/Compr. Granularity
Details
|
4-128 KB variable block size (inline)
32-128 KB variable block size (post-processing)
NEW
With inline deduplication and compression, the data is organized in 128 KB segments. Depending on the optimization setting, a write into such a segment first gets compressed (when compression is selected) and then a hash is generated. If the hash is unique, the 128 KB segment is written back and the hash is added to the deduplication hash-table. If the hash is not unique, the segment is referenced in the deduplication hash table and discarded. The smallest chunk in the segment can be 4 KB.
For post-processing the system leverages deduplication in Windows Server 2016/2019, files within a deduplication-enabled volume are segmented into small variable-sized chunks (32–128 KB), duplicate chunks are identified, and only a single copy of each chunk is physically stored.
|
1 MiB
Scale Computing HC3 post-process data deduplication uses 1 MiB fixed block segments.
|
4 KB fixed block size
vSANs deduplication algorithm utilizes a 4K-fixed block size.
|
|
Dedup/Compr. Guarantee
Details
|
N/A
Microsoft provides the Deduplication Evaluation Tool (DDPEVAL) to assess the data in a particular volume and predict the dedup ratio.
|
N/A
|
N/A
Enabling deduplication and compression can reduce the amount of storage consumed by as much as 7x (7:1 ratio).
|
|
|
Full (optional)
Data rebalancing needs to be initiated manually by the end-user. It depends on the specific use case and end-user environment if this makes sense. When end-users want to isolate new workloads and corresponding data on new nodes, data rebalancing is not used.
|
Full (optional)
Data rebalancing needs to be initiated manually by the end-user. It depends on the specific use case and end-user environment if this makes sense.
|
Full
Data can be redistributed evenly across all nodes in the cluster when a node is either added or removed.
For VMware vSAN data redistribution happens is two ways:
1. Automated: when physical disks are between 30% and 80% full and a node is added to the vSAN cluster, a health alert is generated that allows the end-user to execute an automated data rebalancing run. For this VMware uses the term 'proactive'.
2. Automatic: when physical disks are more than 80% full, vSAN executes an data rebalancing fully automatically, without requiring any user intervention. For this VMware uses the term 'reactive'.
As data is written, all nodes in the cluster service RF copies even when no VMs are running on the node which ensures data is being distributed evenly across all nodes in the cluster.
VMware vSAN 6.7 U3 included proactive rebalancing enhancements. All rebalancing activities can be automated with cluster-wide configuration and threshold settings. Prior to this release, proactive rebalancing was manually initiated after being alerted by vSAN health checks.
|
|
|
Yes
DataCore SANsymphonys Auto-Tiering is a real-time intelligent mechanism that continuously positions data on the appropriate class of storage based on how frequently the data is accessed. Auto-Tiering leverages any combination of Flash and traditional disk technologies, whether it is internal or array based, with up to 15 different storage tiers that can be defined.
As more advanced storage technologies become available, existing tiers can be modified as necessary and additional tiers can be added to further diversify the tiering architecture.
|
Yes
Scale Computing HC3s HyperCore Enhanced Automated Tiering (HEAT) is an extension of the SCRIBE storage layer that is available to HC3 hybrid clusters with 3 nodes or more.
HEAT allows virtual disk level, priority data placement for allocated data (actual consumed capacity on a VM virtual disk). This is accomplished through a real-time heat map of virtual disk I/O in order to “tier” the data. Data blocks that are “hot” (=accessed regularly by the virtual disk) are stored at the SSD level while “colder” data blocks are stored at the HDD level.
There are 4 basic HEAT principles:
1. All VMs have access to SSDs, no matter what node the VM may actually be running on.
2. SSDs are additional capacity for VM disks (subvirtual tiering), not a cache for system data.
3. Administrators have granular control of SSD access at the VM virtual disk level.
4. Administrators are able to mix and match Tiered HC3 nodes with standard HC3 nodes and Storage Only nodes without any extra work or requirements.
The HC3 web interface provides an easy-to-use slide bar on the property page of an individual virtual disk in order to set the flash priority level of a VM’s virtual disk data:
0 Off
1 Minimum
2 Very Low
3 Low
4 Normal (default)
5 High
6 Very High
7 Extreme
8 Absurd
9 Hyperspeed
10 Ludicrous Speed
11 These go to 11
When the flash priority level is set to 0, no data on the virtual disk ever gets promoted to the SSD layer. When the flash priority level is set to 11, all data on the virtual disk is promoted to the SSD layer.
Altering HEAT priority will effect all VM virtual disks within the HC3 cluster. Each increase in flash priority access will dedicate roughly twice as much flash capacity for the VM virtual disk, and consequently reduce the flash capacity available for other VM virtual disks on the system.
|
N/A
The VMware vSAN storage architecture does not include multiple persistent storage layers, but rather consist of a caching layer (fastest storage devices) and a persistent layer (slower/most cost-efficient storage devices).
|
|
|
|
Performance |
|
|
|
vSphere: VMware VAAI-Block (full)
Hyper-V: Microsoft ODX; Space Reclamation (T10 SCSI UNMAP)
DataCore SANsymphony iSCSI and FC are fully qualified for all VMware vSphere VAAI-Block capabilities that include: Thin Provisioning, HW Assisted Locking, Full Copy, Block Zero
Note: DataCore SANsymphony does not support Thick LUNs.
DataCore SANsymphony is also fully qualified for Microsoft Hyper-V 2012 R2 and 2016/2019 ODX and UNMAP/TRIM.
Note: ODX is not used for files smaller than 256KB.
VAAI = VMware vSphere APIs for Array Integration
ODX = Offloaded Data Transfers
UNMAP/TRIM support allows the Windows operating system to communicate the inactive block IDs to the storage system. The storage system can wipe these unused blocks internally.
|
KVM: IOVirt
|
vSphere: Integrated
VMware vSAN is an integral part of the VMware vSphere platform and as such is not a separate storage platform.
VMware vSAN 6.7 adds TRIM/UNMAP support: space that is no longer used can be automatically reclaimed, reducing the overall capacity needed for running workloads.
|
|
|
IOPs and/or MBps Limits
QoS is a means to ensure specific performance levels for applications and workloads. There are two ways to accomplish this:
1. Ability to set limitations to avoid unwanted behavior from non-critical clients/hosts.
2. Ability to set guarantees to ensure service levels for mission-critical clients/hosts.
SANsymphony currently supports only the first method. Although SANsymphony does not provide support for the second method, the platform does offer some options for optimizing performance for selected workloads.
For streaming applications which burst data, it’s best to regulate the data transfer rate (MBps) to minimize their impact. For transaction-oriented applications (OLTP), limiting the IOPs makes most sense. Both parameters may be used simultaneously.
DataCore SANsymphony ensures that high-priority workloads competing for access to storage can meet their service level agreements (SLAs) with predictable I/O performance. QoS Controls regulate the resources consumed by workloads of lower priority. Without QoS Controls, I/O traffic generated by less important applications could monopolize I/O ports and bandwidth, adversely affecting the response and throughput experienced by more critical applications. To minimize contention in multi-tenant environments, the data transfer rate (MBps) and IOPs for less important applications are capped to limits set by the system administrator. QoS Controls enable IT organizations to efficiently manage their shared storage infrastructure using a private cloud model.
More information can be found here: https://docs.datacore.com/SSV-WebHelp/quality_of_service.htm
In order to achieve consistent performance for a workload, a separate Pool can be created where selected vDisks are placed. Alternatively 'Performance Classes' can be assigned to differentiate between data placement of multiple workloads.
|
N/A
Quality-of-Service (QoS) is a means to ensure specific performance levels for applications and workloads. There are two ways to accomplish this:
1. Ability to set limitations to avoid unwanted behavior from non-critical VMs.
2. Ability to set guarantees to ensure service levels for mission-critical VMs.
Scale Computing HC3 currently does not offer any QoS mechanisms.
|
IOPs Limits (maximums)
QoS is a means to ensure specific performance levels for applications and workloads. There are two ways to accomplish this:
1. Ability to set limitations to avoid unwanted behavior from non-critical VMs.
2. Ability to set guarantees to ensure service levels for mission-critical VMs.
vSAN currently supports only the first method and focusses on IOPs. 'MBps Limits' cannot be set. It is also not possible to guarantee a certain amount of IOPs for any given VM.
|
|
|
Virtual Disk Groups and/or Host Groups
SANsymphony QoS parameters can be set for individual hosts or groups of hosts as well as for groups of Virtual Disks for fine grained control.
In a VMware VVols (=Virtual Volumes) environment a vDisk corresponds 1-to-1 to a virtual disk (.vmdk). Thus virtual disks can be placed in a Disk Group and a QoS Limit can then be assigned it. DataCore SANsymphony Provider v2.01 has VVols certification for VMware ESXi 6.5 U2/U3, ESXi 6.7 GA/U1/U2/U3 and ESXi 7.0 GA/U1.
In Microsoft Hyper-V environments, when a VM with vdisks is created through SCVMM, DataCore can be instructed to automatically carve out a Virtual Disk (=storage volume) for every individual vdisk. This way there is a 1-to-1 alignment from end-to-end and QoS Limits can be applied on the virtual disk level. The 1-to-1 allignment is realized by installing the DataCore Storage Management Provider in SCVMM.
|
N/A
Quality-of-Service (QoS) is a means to ensure specific performance levels for applications and workloads. There are two ways to accomplish this:
1. Ability to set limitations to avoid unwanted behavior from non-critical VMs.
2. Ability to set guarantees to ensure service levels for mission-critical VMs.
Scale Computing HC3 currently does not offer any QoS mechanisms.
|
Per VM/Virtual Disk
Quality of Service (QoS) for vSAN is normalized to a 32KB block size, and treats reads the same as writes.
|
|
|
Per VM/Virtual Disk/Volume
With SANsymphony the rough hierarchy is: physical disk(s) or LUNs -> Disk Pool -> Virtual Disk (=logical volume).
In SANsymphony 'Flash Pinning' can be achieved using one of the following methods:
Method #1: Create a flash-only pool and migrate the individual vDisks that require flash pinning to the flash-only pool. When using a VVOL configuration in a VMware environment, each vDisk represents a virtual disk (.vmdk). This method guarantees all application data will be stored in flash.
Method #2: Create auto-tiering pools with at least 1 flash tier. Assign the Performance Class “Critical” to the vDisks that require flash pinning and place them in the auto-tiering pool. This will effectively and intelligently put as much of the data that resides in the vDisk in the flash tier as long that the flash tier has enough space available. Therefore this method is on a best-effort basis and dependent on correct sizing of the flash tier(s).
Methods #1 and #2 can be uses side-by-side in the same DataCore environment.
|
Per virtual disk
Scale Computing HC3s native HEAT feature allows for data of an individual virtual disk to reside completely in flash storage. This can be administered on-the-fly by setting the Flash priority in the virtual disks properties to 11. The new HEAT priority setting will be immediately activated on the VMs virtual disk.
For more information on HEAT please view the information provided with the 'Data Tiering' capability.
HEAT = HyperCore Enhanced Automated Tiering
|
Cache Read Reservation: Per VM/Virtual Disk
With vSAN the Cache Read Reservation policy for a particular VM can be set to 100% to allow all data to also exist entirely on the flash layer. The difference with Nutanix 'VM Flash Mode' is, that with 'VM Flash Mode' persistent data of the VM resides on Flash and is never destaged to spinning disks. In contrast, with vSANs Cache Read Reservation data exists twice: one instance on persistent magnetic disk storage and one instance within the SSD read cache.
|
|
|
|
Security |
|
|
Data Encryption Type
Details
|
Built-in (native)
SANsymphony 10.0 PSP9 introduced native encryption when running on Windows Server 2016/2019.
|
N/A
Although the design of the SCRIBE storage management layer provides some general protection for data stored on a
single hard drive, it is not the same as data encryption. If data encryption is required it is recommended to use in-guest encryption tools to ensure data protection.
|
Built-in (native)
|
|
Data Encryption Options
Details
|
Hardware: Self-encrypting drives (SEDs)
Software: SANsymphony Encryption
Hardware: In SANsymphony deployments the encryption data service capabilities can be offloaded to hardware-based SED offerings available in server- and storage solutions.
Software: SANsymphony provides software-based data-at-rest encryption that is XTS-AES 256bit compliant.
|
Hardware: N/A
Software: HyTrust KeyControl + Client (validated); WinMagic SecureDoc CloudVM (validated)
Hardware: N/A
Software: Scale Computing partners with HyTrust to encrypt the drives of Windows and Linux VMs running on a HC3 system. The HyTrust client software that is installed on all VMs that require encryption, can encrypt both boot drives and data drives. Scale Computing has also validated the interoperability of WinMagic SecureDoc CloudVM for encryption of drives of Windows VMs with its HC3 platform.
|
Hardware: N/A
Software: vSAN data encryption; HyTrust DataControl (validated)
NEW
Hardware: vSAN does no longer support self-encrypting drives (SEDs).
Software: vSAN supports native data-at-rest encryption of the vSAN datastore. When encryption is enabled, vSAN performs a rolling reformat of every disk group in the cluster. vSAN encryption requires a trusted connection between vCenter Server and a key management server (KMS). The KMS must support the Key Management Interoperability Protocol (KMIP) 1.1 standard. In contrast, vSAN native data-in-transit encryption does not require a KMS server. vSAN native data-at-rest and data-in-transit encryption are only available in the Enterprise edition.
vSAN encryption has been validated for the Federal Information Processing Standard (FIPS) 140-2 Level 1.
VMware has also validated the interoperability of HyTrust DataControl software encryption with its vSAN platform.
|
|
Data Encryption Scope
Details
|
Hardware: Data-at-rest
Software: Data-at-rest
Hardware: SEDs provide encryption for data-at-rest; SEDs do not provide encryption for data-in-transit.
Software: SANsymphony provides encryption for data-at-rest; it does not provide encryption for data-in-transit. Encryption can be enabled per individual virtual disk.
|
Hardware: N/A
Software: Data-at-rest
|
Hardware: N/A
Software vSAN: Data-at-rest + Data-in-transit
Software Hytrust: Data-at-rest + Data-in-transit
NEW
Hardware: N/A
Software: VMware vSAN 7.0 U1 encryption provides enhanced security for data on a drive as well as data in transit. Both are optional and can be enabled seperately. HyTrust DataControl encryption also provides encryption for data-at-rest and data-in-transit.
|
|
Data Encryption Compliance
Details
|
Hardware: FIPS 140-2 Level 2 (SEDs)
Software: FIPS 140-2 Level 1 (SANsymphony)
FIPS = Federal Information Processing Standard
FIPS 140-2 defines four levels of security:
Level 1 > Basic security requirements are specified for a cryptographic module (eg. at least one Approved algorithm or Approved security function shall be used).
Level 2 > Also has features that show evidence of tampering.
Level 3 > Also prevents the intruder from gaining access to critical security parameters (CSPs) held within the cryptographic module.
Level 4 > Provides a complete envelope of protection around the cryptographic module with the intent of detecting and responding to all unauthorized attempts at physical access.
|
Hardware: N/A
Software: FIPS 140-2 Level 1 (HyTrust; WinMagic)
|
Hardware: N/A
Software: FIPS 140-2 Level 1 (vSAN); FIPS 140-2 Level 1 (HyTrust)
FIPS = Federal Information Processing Standard
FIPS 140-2 defines four levels of security:
Level 1 > Basic security requirements are specified for a cryptographic module (eg. at least one Approved algorithm or Approved security function shall be used).
Level 2 > Also has features that show evidence of tampering.
Level 3 > Also prevents the intruder from gaining access to critical security parameters (CSPs) held within the cryptographic module.
Level 4 > Provides a complete envelope of protection around the cryptographic module with the intent of detecting and responding to all unauthorized attempts at physical access.
|
|
Data Encryption Efficiency Impact
Details
|
Hardware: No
Software: No
Hardware: Because data encryption is performed at the end of the write path, storage efficiency mechanisms are not impaired.
Software: Because data encryption is performed at the end of the write path, storage efficiency mechanisms are not impaired.
|
Hardware: N/A
Software: Yes (HyTrust; WinMagic)
FIPS = Federal Information Processing Standard
FIPS 140-2 defines four levels of security:
Level 1 > Basic security requirements are specified for a cryptographic module (eg. at least one Approved algorithm or Approved security function shall be used).
Level 2 > Also has features that show evidence of tampering.
Level 3 > Also prevents the intruder from gaining access to critical security parameters (CSPs) held within the cryptographic module.
Level 4 > Provides a complete envelope of protection around the cryptographic module with the intent of detecting and responding to all unauthorized attempts at physical access.
|
Hardware: N/A
Software: No (vSAN); Yes (HyTrust)
Hardware: N/A
Software vSAN: Because data encryption is performed at the end of the write path, storage efficiency mechanisms are not impaired.
Software Hytrust: Because HyTrust DataControl is an end-to-end solution, encryption is performed at the start of the write path and some efficiency mechanisms (eg. deduplication and compression) are effectively negated.
|
|
|
|
Test/Dev |
|
|
|
Yes
Support for fast VM cloning via VMware VAAI and Microsoft ODX.
|
Yes
Scale Computing HC3 leverages block reference counting to avoid having to copy blocks of data when creating a clone of a virtual machine. Because block reference counting is integrated in both the storage protocol as well as the RSDs, it is very fast and eliminates a round-trip when performing copy-on-write actions.
The clone feature on a HC3 cluster will create an identical VM to the parent, but with its own unique name and description. The clone VM will be completely independent from the parent VM once it is created.
|
No
VMware vSAN itself does not include fast cloning capabilities.
Cloning operations actually copy all the data to provide a second instance. When cloning a running VM on vSAN, all the VMDKs on the source VM are snapshotted first before cloning them to the destination VM.
VMware vSphere however does provide Instant Clone technology, which enables you to clone a VM instantly both from CPU and a memory stance.
|
|
|
|
Portability |
|
|
Hypervisor Migration
Details
|
Hyper-V to ESXi (external)
ESXi to Hyper-V (external)
VMware Converter 6.2 supports the following Guest Operating Systems for VM conversion from Hyper-V to vSphere:
- Windows 7, 8, 8.1, 10
- Windows 2008/R2, 2012/R2 and 2016
- RHEL 4.x, 5.x, 6.x, 7.x
- SUSE 10.x, 11.x
- Ubuntu 12.04 LTS, 14.04 LTS, 16.04 LTS
- CentOS 6.x, 7.0
The VMs have to be in a powered-off state in order to be migrated across hypervisor platforms.
Microsoft Virtual Machine Converter (MVMC) supports conversion of VMware VMs and vdisks to Hyper-V VMs and vdisks. It is also possible to convert physical machines and disks to Hyper-V VMs and vdisks.
MVMC has been offcially retired and can only be used for converting VMs up to version 6.0.
Microsoft System Center Virtual Machine Manager (SCVMM) 2016 also supports conversion of VMs up to version 6.0 only.
|
HC3 Move
HC3 Move is powered by Carbonite (formerly Double-Take) and allows the migration of physical or virtual Windows and Linux-based server workloads with real-time replication and zero-downtime.
HC3 Move requires the purchase of a one-time-use license per server that needs to be migrated to the Scale Computing HC3 platform.
HC3 Move does not support desktop operating systems.
|
Hyper-V to ESXi (external)
VMware Converter 6.2 supports the following Guest Operating Systems for VM conversion from Hyper-V to vSphere:
- Windows 7, 8, 8.1, 10
- Windows 2008/R2, 2012/R2 and 2016
- RHEL 4.x, 5.x, 6.x, 7.x
- SUSE 10.x, 11.x
- Ubuntu 12.04 LTS, 14.04 LTS, 16.04 LTS
- CentOS 6.x, 7.0
The VMs have to be in a powered-off state in order to be migrated across hypervisor platforms.
|
|
|
|
File Services |
|
|
|
Built-in (native)
SANsymphony delivers out-of-box (OOB) file services by leveraging Windows native SMB/NFS and Scale-out File Services capabilities. SANsymphony is capable of simultaneously handling highly-available block and file level services.
Raw storage is provisioned from within the SANsymphony GUI to the Microsoft file services layer, similar to provisioning Storage Spaces Volumes to the file services layer. This means any file services configuration is performed from within the respective Windows service consoles e.g. quotas.
More information can be found under: https://www.datacore.com/products/features/high-availability-nas-cluster-file-sharing.aspx
|
N/A
Scale Computing HC3 does not provide any file serving capabilities of its own.
Inside a Guest VM all native file service features of the Microsoft Windows and/or Linux operating system can be leveraged to host network shares.
Linux requires Samba Server components to provide SMB file shares.
Depending on the OS of the Guest VM providing file services, quotas can been set on the share or the filesystem level.
|
Built-in (native)
External (vSAN Certified)
NEW
vSAN 7.0 U1 has integrated file services. vSAN File Services leverages scale-out architecture by deploying an Agent/Appliance VM (OVF templates) on individual ESXi hosts. Within each Agent/Appliance VM a container, or “protocol stack”, is running. The 'protocol stack' creates a file system that is spread across the VMware vSAN Virtual Distributed File System (VDFS), and exposes the file system as an NFS file share. The file shares support NFSv3, NFSv4.1, SMBv2.1 and SMBv3 by default. A file share has a 1:1 relationship with a VDFS volume and is formed out of vSAN objects. The minimum number of containers that need to be deployed is 3, the maximum 32 in any given cluster. vSAN 7.0 Files Services are deployed through the vSAN File Service wizard.
vSAN File Services currenty has the following restrictions:
- not supported on 2-node clusters,
- not supported on stretched clusters,
- not supported in combination with vLCM (vSphere Lifecycle Manager),
- it is not supported to mount the NFS share from your ESXi host,
- no integration with vSAN Fault Domains.
The alternative to vSAN File Services is to provide file services through Windows guest VMs (SMB) and/or Linux guest VMs (NFS) on top of vSAN. These file services can be made highly available by using clustering techniques.
Another alternative is to use virtual storage appliances from a third-party to host file services on top of vSAN. The following 3rd party File Services partner products are certified with vSAN 6.7:
- Cohesity DataPlatform 6.1
- Dell EMC Unity VSA 4.4
- NetApp ONTAP Select vNAS 9.5
- Nexenta NexentaStor VSA 5.1.2 and 5.2.0VM
- Panzura Freedom Filer VSA 7.1.9.3
However, none of the mentioned platforms have been certified for vSAN 7.0 or 7.0U1 (yet).
|
|
Fileserver Compatibility
Details
|
Windows clients
Linux clients
Because SANsymphony leverages Windows Server native CIFS/NFS and Scale-out File services, most Windows and Linux clients are able to connect.
|
N/A
Scale Computing HC3 does not provide any file serving capabilities of its own.
Inside a Guest VM all native file service features of the Microsoft Windows and/or Linux operating system can be leveraged to host network shares.
Linux requires Samba Server components to provide SMB file shares.
Depending on the OS of the Guest VM providing file services, quotas can been set on the share or the filesystem level.
|
Windows clients
Linux clients
NEW
vSAN 7.0 U1 File Services supports all client platforms that support NFS v3/v4.1 or SMB v2.1/v3. This includes traditional use cases as well as persistent volumes for Kubernetes on vSAN datastores.
vSAN 7.0 U1 File Services supports Microsoft Active Directory and Kerberos authentication for NFS.
VMware does not support leveraging vSAN 7.0 U1 File Services file shares as NFS datastores on which VMs can be stored and run.
|
|
Fileserver Interconnect
Details
|
SMB
NFS
Because SANsymphony leverages Windows Server native CIFS/NFS and Scale-out File services, Windows Server platform compatibility applies:
SMB versions1,2 and 3 are supported, as are NFS versions 2, 3 and 4.1.
|
N/A
Scale Computing HC3 does not provide any file serving capabilities of its own.
Inside a Guest VM all native file service features of the Microsoft Windows and/or Linux operating system can be leveraged to host network shares.
Linux requires Samba Server components to provide SMB file shares.
Depending on the OS of the Guest VM providing file services, quotas can been set on the share or the filesystem level.
|
SMB
NFS
NEW
vSAN 7.0 U1 File Services supports all client platforms that support NFS v3/v4.1 or SMB v2.1/v3. This includes traditional use cases as well as persistent volumes for Kubernetes on vSAN datastores.
vSAN 7.0 U1 File Services supports Microsoft Active Directory and Kerberos authentication for NFS.
VMware does not support leveraging vSAN 7.0 U1 File Services file shares as NFS datastores on which VMs can be stored and run.
|
|
Fileserver Quotas
Details
|
Share Quotas, User Quotas
Because SANsymphony leverages Windows Server native CIFS/NFS and Scale-out File services, all Quota features available in Windows Server can be used.
|
N/A
Scale Computing HC3 does not provide any file serving capabilities of its own.
Inside a Guest VM all native file service features of the Microsoft Windows and/or Linux operating system can be leveraged to host network shares.
Linux requires Samba Server components to provide SMB file shares.
Depending on the OS of the Guest VM providing file services, quotas can been set on the share or the filesystem level.
|
Share Quotas
vSAN 7.0 File Services supports share quotas through the following settings:
- Share warning threshold: When the share reaches this threshold, a warning message is displayed.
- Share hard quota: When the share reaches this threshold, new block allocation is denied.
|
|
Fileserver Analytics
Details
|
Partial
Because SANsymphony leverages Windows Server native CIFS/NFS, Windows Server built-in auditing capabilities can be used.
|
N/A
Scale Computing HC3 does not provide any file serving capabilities of its own.
Inside a Guest VM all native file service features of the Microsoft Windows and/or Linux operating system can be leveraged to host network shares.
Linux requires Samba Server components to provide SMB file shares.
Depending on the OS of the Guest VM providing file services, quotas can been set on the share or the filesystem level.
|
Partial
vSAN 7.0 File Services provide some analytics capabilities:
- Amount of capacity consumed by vSAN File Services file shares,
- Skyline health monitoring with regard to infrastructure, file server and shares.
|
|
|
|
Object Services |
|
|
Object Storage Type
Details
|
N/A
DataCore SANsymphony does not provide any object storage serving capabilities of its own.
|
N/A
Scale Computing HC3 does not provide any object storage serving capabilities of its own.
|
N/A
VMware vSAN does not provide any object storage serving capabilities of its own.
|
|
Object Storage Protection
Details
|
N/A
DataCore SANsymphony does not provide any object storage serving capabilities of its own.
|
N/A
Scale Computing HC3 does not provide any object storage serving capabilities of its own.
|
N/A
VMware vSAN does not provide any object storage serving capabilities of its own.
|
|
Object Storage LT Retention
Details
|
N/A
DataCore SANsymphony does not provide any object storage serving capabilities of its own.
|
N/A
Scale Computing HC3 does not provide any object storage serving capabilities of its own.
|
N/A
VMware vSAN does not provide any object storage serving capabilities of its own.
|
|
|
Management
|
|
|
|
|
|
|
Interfaces |
|
|
GUI Functionality
Details
|
Centralized
SANsymphonys graphical user interface (GUI) is highly configurable to accommodate individual preferences and includes guided wizards and workflows to simplify administration. All actions available from the GUI may also be scripted with PowerShell Commandlets to orchestrate workflows with other tools and applications.
|
Centralized
Scale Computing HC3 management, capacity monitoring, performance monitoring and efficiency reporting is performed through the HC3 HTML5 web-based user interface.
|
Centralized
vSAN management, capacity monitoring, performance monitoring and efficiency reporting is performed through the vSphere Web Client interface.
Other functionality such as backups and snapshots are also managed from the vSphere Web Client Interface.
|
|
|
Single-site and Multi-site
|
Single-site and Multi-site
Up to 25 clusters can be manage centrally using the Scale Computing HC3 web-based user interface.
|
Single-site and Multi-site
Centralized management of multicluster environments can be performed through the vSphere Web Client by using Enhanced Linked Mode.
Enhanced Linked Mode links multiple vCenter Server systems by using one or more Platform Services Controllers. Enhanced Linked Mode enables you to log in to all linked vCenter Server systems simultaneously with a single user name and password. You can view and search across all linked vCenter Server systems. Enhanced Linked Mode replicates roles, permissions, licenses, and other key data across systems. Enhanced Linked Mode requires the vCenter Server Standard licensing level, and is not supported with vCenter Server Foundation or vCenter Server Essentials.
|
|
GUI Perf. Monitoring
Details
|
Advanced
SANsymphony has visibility into the performance of all connected devices including front-end channels, back-end channels, cache, physical disks, and virtual disks. Metrics include Read/write IOPs, Read/write MBps and Read/Write Latency at all levels. These metrics can be exported to the Windows Performance Monitoring (Perfmon) utility where other server parameters are being tracked.
The frequency at which performance metrics can be captured and reported on is configurable, real-time down to 1 second intervals and long term recording at 2 minutes granularity.
When a trend analysis is required, an end-user can simply enable a recording session to capture metrics over a longer period of time.
|
Basic
|
Advanced
NEW
Performance information can be viewed on the cluster level, the Host level and the VM level. Per VM there is also a view on backend performance. Performance graphs focus on IOPS, MB/s and Latency of Reads and Writes. Statistics for networking, resynchronization, and iSCSI are also included.
End-users can select saved time ranges in performance views. vSAN saves each selected time range when end-users run a performance query.
There is also a VMware vRealize Operations (vROps) Management Pack for vSAN that provides additional options for monitoring, managing and troubleshooting vSAN.
The vSphere 6.7 Client includes an embedded vRealize Operations (vROps) plugin that provides basic vSAN and vSphere operational dashboards. The vROps plugin does not require any additional vROps licensing. vRealize Operations within vCenter is only available in the Enterprise and Advanced editions of vSAN.
vSAN observer as of vSAN 6.6 is deprecated but still included. In its place, vSAN Support Analytics is provided to deliver more enhanced support capabilities, including performance diagnostics. Performance diagnostics analyzes previously executed benchmark tests. It detects issues, suggests remediation steps, and provides supporting performance graphs for further insight. Performance Diagnostics requires participation in the Customer Experience Improvement Program (CEIP).
vSAN 6.7 U3 introduced a vSAN CPU metric through the performance service, and provides a new command-line utility (vsantop) for real-time performance statistics of vSAN, similar to esxtop for vSphere.
vSAN 7.0 introduces vSAN Memory metric through the performance service and the API for measuring vSAN memory usage.
vSAN 7.0 U1 introduces vSAN IO Insight for investigating the storage performance of individual VMs. vSAN IO Insight generates the following performance statistics which can be viewed from within the vCenter console:
- IOPS (read/write/total)
- Throughput (read/write/total)
- Sequential & Random Throughput (sequential/random/total)
- Sequential & Random IO Ratio (sequential read IO/sequential write IO/sequential IO/random read IO/random write IO/random IO)
- 4K Aligned & Unaligned IO Ratio (4K aligned read IO/4K aligned write IO/4K aligned IO/4K unaligned read IO/4K unaligned write IO/4K unaligned IO)
- Read & Write IO Ratio (read IO/writeIO)
- IO Size Distribution (read/write)
- IO Latency Distribution (read/write)
|
|
|
VMware vSphere Web Client (plugin)
VMware vCenter plug-in for SANsymphony
SCVMM DataCore Storage Management Provider
Microsoft System Center Monitoring Pack
DataCore offers deep integration with VMware vSphere and Microsoft Hyper-V, as well as their respective systems management tools, vCenter and System Center.
SCVMM = Microsoft System Center Virtual Machine Manager
|
Not relevant (Unified interface)
Because Scale Computing HC3 controls the entire Hyperconvergence stack (hypervisor, compute, storage), the HC3 web-based user interface provides all the required management functionality.
|
VMware HTML5 vSphere Client (integrated)
VMware vSphere Web Client (integrated)
vSAN 6.6 and up provide integration with the vCenter Server Appliance. End-users can create a vSAN cluster as they deploy a vCenter Server Appliance, and host the appliance on that cluster. The vCenter Server Appliance Installer enables end-users to create a one-host vSAN cluster, with disks claimed from the host. vCenter Server Appliance is deployed on the vSAN cluster.
vSAN 6.6 and up also support host-based vSAN monitoring. This means end-users can monitor vSAN health and basic configuration through the ESXi host client. This also allows end-users to correct configuration issues at the host level.
vSAN 6.7 introduced support for the HTML5-based vSphere Client that ships with vCenter Server. vSAN Configuration Assist and vSAN Updates are available only in the vSphere Web Client.
|
|
|
|
Programmability |
|
|
|
Full
Using DataCores native management console, Virtual Disk Templates can be leveraged to populate storage policies. Available configuration items: Storage profile, Virtual disk size, Sector size, Reserved space, Write-trough enabled/disabled, Storage sources, Preferred snapshot pool, Accelerator enabled/disabled, CDP enabled/disabled.
Virtual Disk Templates integrate with System Center Virtual Machine Manager (SCVMM), VMware Virtual Volumes (VVol) and OpenStack. Virtual Disk Templates are also fully supported by the REST-API allowing any third-party integration.
Using Virtual Volumes (VVols) defined through DataCore’s VASA provider, VMware administrators can self-provision datastores for virtual machines (VMs) directly from their familiar hypervisor interface. This is possible even for devices in the DataCore pool that don’t natively support VVols and never will, as SANsymphony can be used as a storage-virtualization layer for these devices/solutions. DataCore SANsymphony Provider v2.01 has VVols certification for VMware ESXi 6.5 U2/U3, ESXi 6.7 GA/U1/U2/U3 and ESXi 7.0 GA/U1.
Using Classifications and StoragePools defined through DataCore’s Storage Management Provider, Hyper-V administrators can self-provision virtual disks and pass-through LUNS for virtual machines (VMs) directly from their familiar SCVMM interface.
|
Full
Scale Computing HC3 leverages Storage Policy-Based Management (SPBM) that allows administrators to build a profile for each VM with regard to protection and for each virtual disk with regard to data tiering.
|
Full
Storage Policy-Based Management (SPBM) is a feature of vSAN that allows administrators to create storage profiles so that virtual machines (VMs) dont need to be individually provisioned/deployed and so that management can be automated. The creation of storage policies is fully integrated in the vSphere GUI.
|
|
|
REST-APIs
PowerShell
The SANsymphony REST-APIs library includes more than 200 new representational state transfer (REST) operations, so automation can be leveraged more extensively. RESTful interfaces are used by products such as Lenovo XClarity, Cisco Embedded Resource Manager and Dell OpenManage to manage infrastructure in the enterprise.
SANsymphony provides its own Powershell cmdlets.
|
REST-APIs
Apache Thrift
Python executables
Both Scale Computing end-users and ecosystem partners can programmatically manage the HC3 platform by using either REST-APIs, Apache Thrift and/or Python executables.
|
REST-APIs
Ruby vSphere Console (RVC)
PowerCLI
|
|
|
OpenStack
OpenStack: The SANsymphony storage solution includes a Cinder driver, which interfaces between SANsymphony and OpenStack, and presents volumes to OpenStack as block devices which are available for block storage.
Datacore SANsymphony programmability in VMware vRealize Automation and Microsoft System Center can be achieved by leveraging PowerShell and the SANsymphony specific cmdlets.
|
N/A
Scale Computing HC3 does not provide tight integration with either OpenStack or any automation/orchestration platforms.
|
OpenStack
VMware vRealize Automation (vRA)
OpenStack integration is achieved through VMware Integrated OpenStack v2.0
vRealize Automation 7 integration is achieved through vRA 7.0.
|
|
|
Full
The DataCore SANsymphony GUI offers delegated administration to secondary users through fine-grained Role-based Access Control (RBAC). The administrator is able to define Virtual Disk ownership as well as privileges associated with that particular ownership. Owners must have Virtual Disk privileges in an assigned role in order to perform operations on the virtual disk. Access can be very refined. For example, one owner may have the privilege to create a snapshot of a virtual disk, but not have the ability to serve or unserve the same virtual disk. Privilege sets define the operations that can be performed. For instance, in order for an owner to perform snapshot, rollback, or replication operations, they would require those privilege sets in an assigned role.
|
Partial
The Scale Computing HC3 GUI offers delegated administration to secondary users through Role-based Access Control (RBAC). The user access level can be changed to “Admin” with full administrator access or customized with a variety of role options that fall in between Read-only and Admin.
The following optional functional roles that represent groupings of funtional tasks, can be assigned:
- Backup - Clone, Export, Import, Add/Pause Replication to a VM, Create/Delete snapshots, and Create/Delete/Modify snapshot schedules.
- Cluster Settings - Create/Modify all settings within Control Center, except for User Management and Control (system/cluster shutdown).
- Cluster Shutdown - Shutdown the system/cluster and any running VMs.
- VM Create/Edit - Import VMs and Create, Modify, Clone, and Add/Modify VM block (virtual disk) and network devices.
- VM Delete - Delete VMs and their associated snapshots and devices.
- VM Power Controls - Start, Shutdown/Power Off, and Live Migrate VMs.
A user can be assigned any number of these optional roles.
|
N/A (not part of vSAN license)
VMware vSAN does not provide any end-user self service capabilities of its own.
A self service portal enables end-users to access a portal where they can provision and manage VMs from templates, eliminating administrator requests or activity.
Self-Service functionality can be enabled by leveraging VMware vRealize Automation (vRA). This requires a separate VMware license.
|
|
|
|
Maintenance |
|
|
|
Unified
All storage related features and functionality are built into the DataCore SANsymphony platform. The consolidation means, that only one product needs to be installed and upgraded and minimal dependencies exist with other software.
Integration with 3rd party systems (e.g. OpenStack, vSphere, System Center) are delivered seperately but are free-of-charge.
|
Unified
All storage related features and functionality are built into the Scale Computing HC3 platform. The consolidation means, that only one product needs to be installed and upgraded and minimal dependencies exist with other software.
|
Partially Distributed
For a number of features and functions vSAN relies on other components that need to be installed and upgraded next to the core vSphere platform. This is mosly relevant for backup/restore and file services. As a result some dependencies exist with other software.
|
|
SW Upgrade Execution
Details
|
Rolling Upgrade (1-by-1)
Each SANsymphony update is packaged in an installation Wizard which contains a fully guided upgrade process. The upgrade process checks all system requirements and performs a system health before starting the upgrade process and before moving from one node to the next.
The user can also decide to upgrade a SANsymphony cluster manually and follow all steps that are outlined in the Release Notes.
|
Rolling Upgrade (1-by-1)
Scale Computing provides one-click software and firmware upgrades of HC3 nodes that typically takes minutes to complete, while all VMs remain online during the entire upgrade procedure.
|
Rolling Upgrade (1-by-1)
Because vSAN is a kernel-based solution, upgrading vSAN requires upgrading the vSphere hypervisor. The VMware vSphere Update Manager (VUM) can be used to automate the upgrade process of hosts in a vSAN cluster. When upgrading, you can choose between two evacuation modes: Ensure Accessibility or Full Data Migration.
VMware Update Manager (VUM) builds recommendations for vSAN. Update Manager can scan the vSAN cluster and recommend host baselines that include updates, patches, and extensions. It manages recommended baselines, validates the support status from vSAN HCL, and downloads the correct ESXi ISO images from VMware.
vSAN 6.7 U1 performs a simulation of data evacuation to determine if the operation will succeed or fail before it starts. If the evacuation will fail, vSAN halts the operation before any resynchronization activity begins. In addition, the vSphere Client enables end users to modify the component repair delay timer.
vSAN 6.7 U3 includes an improved vSAN update recommendation experience from VUM, which allows users to configure the recommended baseline for a vSAN cluster to either stay within the current version and only apply available patches or updates, or upgrade to the latest ESXi version that is compatible with the cluster.
vSAN 6.7 U3 introduces vCenter forward compatibility with ESXi. vCenter Server can manage newer versions of ESXi hosts in a vSAN cluster, as long as both vCenter and its managed hosts have the same major vSphere version. Critical ESXi patches can be applied without updating vCenter Server to the same version.
vSAN 7.0 native File Services upgrades are also performed on a rolling basis. The file shares remain accessible during the upgrade as file server containers running on the virtual machines which are undergoing upgrade fail over to other virtual machines. During the upgrade some interruptions might be experienced while accessing the file shares.
|
|
FW Upgrade Execution
Details
|
Hardware dependent
Some server hardware vendors offer rolling upgrade options with their base software or with a premium software suite. With some other server vendors, BIOS and Baseboard Management Controller (BMC) updated have to be performed manually and 1-by-1.
DataCore provides integrated firmware-control for FC-cards. This means the driver automatically loads the required firmware on demand.
|
1-Click
Scale Computing provides one-click software and firmware upgrades of HC3 nodes that typically takes minutes to complete, while all VMs remain online during the entire upgrade procedure.
|
Rolling Upgrade (1-by-1)
VMware vSAN provides 1-click GUI-based support for installing/updating firmware from a growing list of server hardware vendors. Currently this works for Dell, Lenovo, Fujitsu, and SuperMicro servers.
Some other server hardware vendors offer rolling upgrade options with their base software or with a premium software suite. With some other server vendors, BIOS and Baseboard Management Controller (BMC) updated have to be performed manually and 1-by-1.
VMware Update Manager (VUM) builds recommendations for vSAN. Update Manager can scan the vSAN cluster and recommend host baselines that include updates, patches, and extensions. It manages recommended baselines, validates the support status from vSAN HCL, and downloads the correct ESXi ISO images from VMware.
HBA firmware update through VUM: Storage I/O controller firmware for vSAN hosts is now included as part of the VUM remediation workflow. This functionality was previously provided in a vSAN utility called Configuration Assist. VUM also supports custom ISOs that are provided by certain OEM vendors and vCenter Servers that do not have internet connectivity.
vSAN 7.0 introduces vSphere Lifecycle Manager (vLCM) support for Dell and HPE ReadyNodes. vSphere Lifecycle Manager (vLCM) uses a desired-state model that provides lifecycle management for the hypervisor and the full stack of drivers and firmware on ESXi hosts.
|
|
|
|
Support |
|
|
Single HW/SW Support
Details
|
No
With regard to DataCore SANsymphony as a software-only offering (SDS), DataCore does not offer unified support for the entire solution. This means storage software support (SANsymphony) and server hardware support are separate.
|
Yes
|
Yes (most OEM vendors)
Most VMware OEM partners (eg. Fujitsu, HPE, Dell) offer full support for both server hardware and VMware vSphere software including vSAN. Because VMware vSphere is delivered through OEM, customers are required to buy both software and hardware from the server hardware vendor.
Because VMware vSAN is a software-only offering (SDS), end users still have the choice to acquire server hardware support and software support separately.
|
|
Call-Home Function
Details
|
Partial (HW dependent)
With regard to DataCore SANsymphony as a software-only offering (SDS), DataCore does not offer call-home for the entire solution. This means storage software support (SANsymphony) and server hardware support are separate.
|
Full
When the Scale Computing HC3 state machines detect failure modes or significant issues, they notify the Scale Computing support group (by default settings) via SNMP. Also, the state machines themselves automatically remediate the issue if possible.
|
Partial (vSAN Support Insight)
With regard to vSAN as a software-only offering (SDS), VMware does not offer call-home for the entire solution consisting of both storage software and sever hardware. This means storage software support (vSAN) and server hardware support are separate.
VMware vSAN Support Insight: For end user organizations participating in the VMware Customer Experience Improvement Program (CEIP) anonymized telemetry data is collected hourly to help VMware Global Support Services (GSS) and Engineering to understand usage patterns of features and hardware, identify common product issues faced by end users, and understand and diagnose the end user organizations configuration and runtime state to expedite support request handling. All information is gathered from VMWare vCenter and as such provides an indirect view of the server hardware state.
VMware vSAN Support Insight is available at no additional cost for all vSAN customers with an active support contract running vSphere 6.5 Patch 2 or higher.
Some server hardware vendors provide call-home support for hardware related failures eg. failed disks, faulty network interface cards (NICs). In some cases this type of pro-active support requires an enhanced support contract.
|
|
Predictive Analytics
Details
|
Partial
Capacity Management: DataCore SANsymphony Analysis and Reporting supports depletion monitoring of the capacity, complements pool space threshold warnings by regularly evaluating the rate of capacity consumption and estimating when space will be depleted. The regularly updated projections give you a chance to add more storage to the pool before you run out of storage. It also helps you do a better job of capacity planning with fewer surprises. To help allocate costs, especially in private cloud and hosted cloud services, SANsymphony generates reports quantifying the storage resources consumed by specific hosts or groups of hosts. The reports tally several parameters.
Health Monitoring: A combination of system health checks and access to device S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology) alerts help to isolate performance and disk problems before they become serious.
DataCore Insight Services (DIS) offers additional capabilites including log-analytics for predictive failure analysis and actionable insights - including hardware.
DIS also provides predictive capacity trend analysis in order to pro-actively warn about licensing limitations being reached within x days and/or disk pools running out of capacity.
|
N/A
Scale Computing HC3 does not natively have predictive analytics capabilities.
|
Full (not part of vSAN license)
vRealize Operations (vROps) provides native vSAN support with multiplay dashboards for proactive alerting, heat maps, device and cluster insights, and streamlined issue resolution. Also vROps provides forward trending and forecasting to vSAN datastore as well as any another datastore (SAN/NAS).
vSAN 6.7 introduced 'vRealize Operations (vROps) within vCenter'. This provides end users with 6 dashboards inside vCenter console, giving insights but not actions. Three of these dashboards relate to vSAN: Overview, Cluster View, Alerts. One of the widgets inside these dasboards displays 'Time remaining before capacity runs out'. Because this provides only some very basic trending information, a full version of the vROps product is still required.
'vRealize Operations (vROps) within vCenter' is included with vSAN Enterprise and vSAN Advanced.
The full version of vRealize Operations (vROps) is licensed as a separate product from VMware vSAN.
VMware vSAN 6.7 U3 introduced increased hardening during capacity-strained scenarios. This entails new robust handling of capacity usage conditions for improved detection, prevention, and remediation of conditions where cluster capacity has exceeded recommended thresholds.
|
|